首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   16篇
  国内免费   21篇
安全科学   201篇
废物处理   13篇
环保管理   40篇
综合类   203篇
基础理论   17篇
污染及防治   82篇
评价与监测   198篇
社会与环境   3篇
灾害及防治   6篇
  2024年   2篇
  2023年   15篇
  2022年   5篇
  2021年   27篇
  2020年   23篇
  2019年   21篇
  2018年   10篇
  2017年   19篇
  2016年   36篇
  2015年   40篇
  2014年   49篇
  2013年   57篇
  2012年   37篇
  2011年   41篇
  2010年   21篇
  2009年   27篇
  2008年   36篇
  2007年   41篇
  2006年   21篇
  2005年   25篇
  2004年   27篇
  2003年   24篇
  2002年   15篇
  2001年   13篇
  2000年   22篇
  1999年   20篇
  1998年   25篇
  1997年   17篇
  1996年   11篇
  1995年   11篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1987年   2篇
  1986年   1篇
排序方式: 共有763条查询结果,搜索用时 93 毫秒
331.
This paper describes the finite difference algorithm that has been developed for the flow sub-model of the University of Southampton landfill degradation and transport model LDAT. The liquid and gas phase flow components are first decoupled from the solid phase of the full multi-phase, multi-component landfill process constitutive equations and are then rearranged into a format that can be applied as a calculation procedure within the framework of a three dimensional array of finite difference rectangular elements.The algorithm contains a source term which accommodates the non-flow landfill processes of degradation, gas solubility, and leachate chemical equilibrium, sub-models that have been described in White and Beaven (2013).The paper includes an illustration of the application of the flow sub-model in the context of the leachate recirculation tests carried out at the Beddington landfill project. This illustration demonstrates the ability of the sub-model to track movement in the gas phase as well as the liquid phase, and to simulate multi-directional flow patterns that are different in each of the phases.  相似文献   
332.
Study of flame distribution laws and the hazard effects in a tunnel gas explosion accident is of great importance for safety issue. However, it has not yet been fully explored. The object of present work is mainly to study the effects of premixed gas concentration on the distribution law of the flame region and the hazard effects involving methane-air explosion in a tube and a tunnel based on experimental and numerical results. The experiments were conducted in a tube with one end closed and the other open. The tube was partially filled with premixed methane-air mixture with six different premixed methane concentrations. Major simulation works were performed in a full-scale tunnel with a length of 1000 m. The first 56 m of the tunnel were occupied by methane–air mixture. Results show that the flame region is always longer than the original gas region in any case. Concentration has significant effects on the flame region distribution and the explosion behaviors. In the tube, peak overpressures and maximum rates of overpressure rise (dp/dt)max for mixtures with lower and higher concentrations are great lower than that for mixtures close to stoichiometric concentration. Due to the gas diffusion effect, not the stoichiometric mixture but the mixture with a slightly higher concentration of 11% gets the highest peak overpressure and the shock wave speed along the tube. In the full-scale tunnel, for fuel lean and stoichiometric mixture, the maximum peak combustion rates is achieved before arriving at the boundary of the original methane accumulation region, while for fuel rich mixture, the maximum value appears beyond the region. It is also found that the flame region for the case of stoichiometric mixture is the shortest as 72 m since the higher explosion intensity shortens the gas diffusion time. The case for concentration of 13% can reach up to a longest value of 128 m for longer diffusion time and the abundant fuel. The “serious injury and death” zone caused by shock wave may reach up to 3–8 times of the length of the original methane occupied region, which is the widest damage region.  相似文献   
333.
Double-electrode gas metal arc welding (DE-GMAW) is a novel welding process in which a second electrode, non-consumable or consumable, is added to bypass part of the wire current. The bypass current reduces the heat input in non-consumable DE-GMAW or increases the deposition rate in consumable DE-GMAW. The fixed correlation of the heat input with the deposition in conventional GMAW and its variants is thus changed and becomes controllable. At the University of Kentucky, DE-GMAW has been tested/developed by adding a plasma arc welding torch, a GTAW (gas tungsten arc welding) torch, a pair of GTAW torches, and a GMAW torch. Steels and aluminum alloys are welded and the system is powered by one or multiple power supplies with appropriate control methods. The metal transfer has been studied at the University of Kentucky and Shandong University resulting in the desirable spray transfer be obtained with less than 100 A base current for 1.2 mm diameter steel wire. At Lanzhou University of Technology, pulsed DE-GMAW has been successfully developed to join aluminum/magnesium to steel. At the Adaptive Intelligent Systems LLC, DE-GMAW principle has been applied to the submerged arc welding (SAW) and the embedded control systems needed for industrial applications have been developed. The DE-SAW resulted in 1/3 reduction in heat input for a shipbuilding application and the weld penetration depth was successfully feedback controlled. In addition, the bypass concept is extended to the GTAW resulting in the arcing-wire GTAW which adds a second arc established between the tungsten and filler to the existing gas tungsten arc. The DE-GMAW is extended to double-electrode arc welding (DE-AW) where the main electrode may not necessarily to be consumable. Recently, the Beijing University of Technology systematically studied the metal transfer in the arcing-wire GTAW and found that the desired metal transfer modes may always be obtained from the given wire feed speed by adjusting the wire current and wire position/orientation appropriately. A variety of DE-AW processes are thus available to suit for different applications, using existing arc welding equipment.  相似文献   
334.
335.
高炉煤气洗涤水处理方法的研究   总被引:3,自引:0,他引:3  
采用化学絮凝法处理高炉煤气洗涤水,通过实验确定了最佳的实验条件和工艺条件。  相似文献   
336.
介绍了气体反溶剂 (GAS)过程细化技术原理及影响细化结果的主要因素 ,并从理论和实验角度分析了炸药重结晶细化处理后 ,对撞击感度和冲击波感度的影响 ;结果表明 ,GAS过程不仅可以有效地控制炸药颗粒的粒度、粒度分布、晶形 ,而且可以有效降低炸药撞击感度和冲击波感度 ,改善炸药安全性能  相似文献   
337.
This work aimed to experimentally evaluate the effects of a carbon monoxide-dominant gas mixture on the explosion characteristics of methane in air and report the results of an experimental study on explosion pressure measurement in closed vessel deflagration for a carbon monoxide-dominant gas mixture over its entire flammable range. Experiments were performed in a 20-L spherical explosion tank with a quartz glass window 110 mm in diameter using an electric spark (1 J) as the ignition source. All experiments were conducted at room temperature and at ambient pressure, with a relative humidity ranging from 52 to 73%. The peak explosion pressure (Pmax), maximum pressure rise rate ((dp/dt)max), and gas deflagration index (KG) were observed and analyzed. The flame propagation behavior in the initial stage was recorded using a high-speed camera. The spherical outward flame front was determined on the basis of a canny method, from which the maximum flame propagation speed (Sn) was calculated. The results indicated that the existence of the mixture had a significant effect on the flame propagation of CH4-air and increased its explosion risk. As the volume fraction of the mixed gas increases, the Pmax, (dp/dt)max, KG and Sn of the fuel-lean CH4-air mixture (7% CH4-air mixture) increase nonlinearly. In contrast, addition of the mixed gas negatively affected the fuel-rich mixture (11% CH4-air mixture), exhibiting a decreasing trend. Under stoichiometric conditions (9.5% CH4-air mixture), the mixed gas slightly lowered Pmax, (dp/dt)max, KG, and Sn. The Pmax of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 5.4, 6.9, and 6.8 bar, respectively. The Sn of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 1.2 m/s, 2.0 m/s, and 1.8 m/s, respectively. The outcome of the study is comprehensive data that quantify the dependency of explosion severity parameters on the gas concentration. In the storage and transportation of flammable gases, the information is required to quantify the potential severity of an explosion, design vessels able to withstand an explosion and design explosion safety measures for installations handling this gas.  相似文献   
338.
The gas pipeline network is an essential infrastructure for a smart city. It provides a much-needed energy source; however, it poses a significant risk to the community. Effective risk management assists in maintaining the operational safety of the network. The risk management of the network requires reliable dynamic failure probability analysis. This paper proposes a methodology of condition monitoring and dynamic failure probability analysis of urban gas pipeline network. The methodology begins with identifying key design and operational factors responsible for pipeline failure. Subsequently, a causation-based failure model is developed as the Bowtie model. The Bowtie model is transformed into a Bayesian network, which is analyzed using operational data. The key contributory factors of accident causation are monitored. The monitored data is used to analyze the updated failure probability of the network. The gas pipeline network's dynamic failure probability is combined with the potential consequences to assess the risk. The application of the approach is demonstrated in a section of the urban gas pipeline.  相似文献   
339.
The interaction of unburnt gas flow induced in an explosion with an obstacle results in the production of turbulence downstream of the obstacle and the acceleration of the flame when it reaches this turbulence. Currently, there are inadequate experimental measurements of these turbulent flows in gas explosions due to transient nature of explosion flows and the connected harsh conditions. Hence, majority of measurements of turbulent properties downstream of obstacles are done using steady-state flows rather than transient flows. Consequently, an empirical based correlation to predict distance to maximum intensity of turbulence downstream of an obstacle in an explosion-induced flow using the available steady state experiments was developed in this study. The correlation would serve as a prerequisite for determining an optimum spacing between obstacles thereby determining worst case gas explosions overpressure and flame speeds. Using a limited experimental work on systematic study of obstacle spacing, the correlation was validated against 13 different test conditions. A ratio of the optimum spacing from the experiment, xexp to the predicted optimum spacing, xpred for all the tests was between 2-4. This shows that a factor of three higher than the xpred would be required to produce optimum obstacle spacing that will lead to maximum explosion severity. In planning the layout of new installations, it is appropriate to identify the relevant worst case obstacle separation in order to avoid it. In assessing the risk to existing installations and taking appropriate mitigation measures it is important to evaluate such risk on the basis of a clear understanding of the effects of separation distance and congestion. It is therefore suggested that the various new correlations obtained from this work be subjected to further rigorous validation from relevant experimental data prior to been applied as design tools.  相似文献   
340.
为了探求一氧化碳与水蒸汽参与瓦斯爆炸的化学反应动力学过程的阻尼效应,建立了受限空间中瓦斯爆炸反应的数学模型。数值计算结果表明,结果表明在瓦斯爆炸过程中,瓦斯-空气混合气体含有10%的一氧化碳,虽然会延迟瓦斯爆炸时间,抑制瓦斯爆炸,但是H、O自由基浓度、瓦斯爆炸温度和压力比不加入一氧化碳时升高,同时对CO2、NO的生成起促进作用;当混合气体中含有10%的水蒸汽时,H、O自由基浓度降低,瓦斯爆炸温度和压力也随之降低,致灾性气体CO2、NO的生成得到抑制。虽然一氧化碳对瓦斯爆炸有一定的阻尼效应,但是由于一氧化碳对部分致灾性气体的生成有促进作用,因此,在阻尼瓦斯爆炸方面,水蒸汽的效果要好于一氧化碳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号