首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   16篇
  国内免费   21篇
安全科学   201篇
废物处理   13篇
环保管理   40篇
综合类   203篇
基础理论   17篇
污染及防治   82篇
评价与监测   198篇
社会与环境   3篇
灾害及防治   6篇
  2024年   2篇
  2023年   15篇
  2022年   5篇
  2021年   27篇
  2020年   23篇
  2019年   21篇
  2018年   10篇
  2017年   19篇
  2016年   36篇
  2015年   40篇
  2014年   49篇
  2013年   57篇
  2012年   37篇
  2011年   41篇
  2010年   21篇
  2009年   27篇
  2008年   36篇
  2007年   41篇
  2006年   21篇
  2005年   25篇
  2004年   27篇
  2003年   24篇
  2002年   15篇
  2001年   13篇
  2000年   22篇
  1999年   20篇
  1998年   25篇
  1997年   17篇
  1996年   11篇
  1995年   11篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1987年   2篇
  1986年   1篇
排序方式: 共有763条查询结果,搜索用时 375 毫秒
671.
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   
672.
Accidental gas releases are detected by allocating sensors in optimal places to prevent escalation of the incident. Gas release effects are typically assessed based on calculating the dispersion from releasing points. In this work, a CFD-based approach is proposed to estimate gas dispersion and then to obtain optimal gas sensors allocation. The Ansys-Fluent commercial package is used to estimate concentrations in the open air by solving the governing equations of continuity, momentum, energy and species convection-diffusion combined with the realizable κ-ε model for turbulence viscosity effects. CFD dynamic simulations are carried out for potential gas leaks, assuming worst-case scenarios with F-stability and 2 m/s wind speed during a 4 min releasing period and considering 8 wind directions. The result is a scenario-based methodology to allocate gas sensors supported on fluid dynamics models. The three x–y–z geographical coordinates for the sensor allocation are included in this analysis. To highlight the methodology, a case study considers releases from a large container surrounded by different types of geometric units including sections with high obstacles, low obstacles, and no obstacles. A non-redundant set of perfect sensors are firstly allocated to cover completely the detection for all simulations releases. The benefits of redundant detection via a MooN voting arranging scheme is also discussed. Numerical results demonstrate the capabilities of CFD simulations for this application and highlight the dispersion effects through obstacles with different sizes.  相似文献   
673.
It is well known that bifurcation structures have a significant influence on gas explosions in pipelines or roadways. In this work, three different types of bifurcation, namely, bifurcation with two right angles (BTRAs), bifurcation with two obtuse angles (BTOAs), and bifurcation with an obtuse angle and an acute angle (BOAA), were used to study the effect of bifurcation on premixed methane–air explosion overpressure in pipes. The effect of the position of bifurcation on gas explosions was also discussed. Our results suggest that the peak overpressure evolution in pipes exhibits a downtrend before the bifurcation, a sharp increase after the bifurcation until reaching the maximum, and a downward trend when propagating into the pipe end. It was also found that gas-explosion propagation was affected by the joint action of turbulence induced by obstacles and the abrupt increase of the cross-sectional area. In addition, the bifurcation’s position had only a small effect on the maximum peak overpressure in pipes.  相似文献   
674.
Sonication is an effective way for sludge disintegration,which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge.But high energy consumption limits the wide application of sonication.In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption,aeration was introduced.Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound.The aeration flow rate,gas bubble size,ultrasonic density and aeration timing had impacts on sludge disintegration efficiency.Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate,small gas bubbles significantly improved ultrasonic disintegration sludge efficiency.At the optimal conditions of 0.4 W/m L ultrasonic irradiation density,30 m L/min of aeration flow rate,5 min of aeration in later stage and small gas bubbles,ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved.This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge.  相似文献   
675.
ICP-OES法测定大气和废气颗粒物中的金属元素   总被引:1,自引:0,他引:1  
将微波消解法与电感耦合等离子体发射光谱法(ICP-OES)相结合,对大气和废气颗粒物中金属元素的微波消解条件及ICP-OES测定条件进行了优化研究,建立了大气和废气颗粒物中铝(Al)、钡(Ba)、镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、钼(Mo)、镍(Ni)、铅(Pb)、锡(Sn)、锶(Sr)及锌(Zn)等金属元素的测定方法。对方法的检出限进行了测定,各元素的检出限均低于0.04 mg/L;对方法的精密度进行了测定,各元素的相对标准偏差在2.59%~7.14%之间;对方法的准确度进行了测定,质控滤膜中各元素的回收率在89.6%~119%之间,颗粒物参考物质中各元素的回收率在85.1%~107%之间,并将该方法成功应用到 TSP、污染源废气实际样品中金属元素的测定。  相似文献   
676.
对热脱附-气相色谱测定苯系物方法中的几种常用吸附剂进行了选择比较。结果表明,在测定苯、甲苯、乙苯、二甲苯以及苯乙烯时,TenaxTA/Carbograph1TD复合型吸附剂的综合吸附效率最好。TenaxTA/Carbograph1TD复合型吸附剂的检出限、精密度、准确度和保存期都得到了良好的结果,能够满足监测分析的要求。  相似文献   
677.
Although the minimum ignition temperature is an important safety characteristic and of practical relevance in industrial processes, actually only standard operation procedures are available for pure substances and single-phase values. Nevertheless, combinations of substances or mixtures are used in industrial processes and up to now it is not possible to provide a standardised minimum ignition temperature and in consequence to design a process safely with regard to the substances used.In order to get minimum ignition temperatures for frequently used hybrid mixtures, first, the minimum ignition temperatures and ignition frequencies were determined in the modified Godbert-Greenwald furnace for two single phase solids and a liquid substance. Second, minimum ignition temperatures and ignition frequencies were determined for several combinations as hybrid mixture of dust and liquid.In parallel to the determination of ignition temperatures a new camera and computer system to differentiate ignition from non-ignition is developed. First results are promising that such a system could be much less operator depended.By a high number of repetitions to classify regions of ignition the base is laid to decide about a new procedure for a hybrid standard and updating existing ones, too. This is one of the necessary aims to be reached in the Nex-Hys project.A noticeable decrease of minimum ignition temperatures below the MIT of the pure solids was observed for the one hybrid mixture tested, yet. Furthermore more widely dispersed area of ignition is shown. In accordance to previously findings, the results demonstrate a strong relationship between likelihood of explosion and amount of added solvent. In consequence the hybrid mixture is characterized by a lower minimum ignition temperature than the single dust.  相似文献   
678.
The inhibition mechanism of gas-solid inhibitors on Al dust explosion was investigated experimentally in a closed cuboid chamber. The variation of parameters concerning flame propagation characteristic and explosion severity used to reflect the synergistic inhibition effect of gas-solid inhibitors on Al dust explosion were elucidated. The results showed that flame propagation velocity and explosion overpressure were inhibited with the increase of gas-solid inhibitors. The inhibition curves of gas-solid inhibitors within the experimental range were further obtained. The reason concerning the SEEP phenomenon was revealed through the GC-MS analysis. The combustion of ammonia enhanced the explosion overpressure when solid inhibitors performed at low concentration. The gas-phase product could be regarded as the inert gas as long as enough amount of inhibitors were added. To comprehend the inhibition mechanism of gas-solid inhibitors, X-ray diffraction was applied to figure out the crystal structure of explosion residue. The results indicated that both physical and chemical inhibition effects were imposed on Al dust explosion by gas-solid inhibitors, including endothermic decomposition, dilution of oxidizer, coverage of Al dust, and scavenger of free radicals. The results of this study will provide a scientific basis for the design of inhibition technology for the dust explosion.  相似文献   
679.
To study the occurrence conditions and propagation characteristics of deflagration to detonation transition (DDT) in linked vessels, two typical linked vessels were investigated in this study. The DDT of the methane–air mixture under different pipe lengths and inner diameters was studied. Results showed that the CJ detonation pressure of the methane–air mixture was 1.86 MPa, and the CJ detonation velocity was 1987.4 m/s. Compared with a single pipe, the induced distance of DDT is relatively short in the linked vessels. With the increase in pipeline length, DDT is more likely to occur. Under the same pipe diameter, the DDT induction distance in the vessel–pipe–vessel structure is shorter than that in the vessel–pipe structure. With the increase in pipeline diameter, the length of the pipe required to form the DDT is reduced. For linked vessels in which detonation formed, four stages, namely, slow combustion, deflagration, deflagration to detonation, and stable detonation, occurred in the vessels. Moreover, for a pipe diameter of 60 mm and a length of 8 m, overdriven detonation occurred in the vessel–pipe–vessel structure.  相似文献   
680.
The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 24 full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号