首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   21篇
  国内免费   103篇
安全科学   31篇
废物处理   39篇
环保管理   74篇
综合类   360篇
基础理论   143篇
污染及防治   249篇
评价与监测   197篇
社会与环境   23篇
灾害及防治   7篇
  2024年   2篇
  2023年   18篇
  2022年   20篇
  2021年   24篇
  2020年   31篇
  2019年   27篇
  2018年   25篇
  2017年   26篇
  2016年   29篇
  2015年   28篇
  2014年   47篇
  2013年   83篇
  2012年   52篇
  2011年   89篇
  2010年   45篇
  2009年   81篇
  2008年   114篇
  2007年   91篇
  2006年   58篇
  2005年   34篇
  2004年   26篇
  2003年   38篇
  2002年   28篇
  2001年   16篇
  2000年   22篇
  1999年   11篇
  1998年   11篇
  1997年   6篇
  1996年   8篇
  1995年   9篇
  1994年   12篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
排序方式: 共有1123条查询结果,搜索用时 15 毫秒
71.
水体重金属污染生物监测的研究进展   总被引:12,自引:3,他引:12  
综述了重金属的毒性效应和水体重金属污染的现状,介绍了利用水生藻类、浮游动物群落和底栖动物监测水体重金属污染的研究进展及发展趋势。  相似文献   
72.
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg−1 and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg−1 Cr and 1000 mg kg−1 Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.  相似文献   
73.
This study identifies the natural background, anthropogenic background and distribution of contamination caused by heavy metal pollutants in soil in Chunghua County of central Taiwan by using a finite mixture distribution model (FMDM). The probabilities of contaminated area distribution are mapped using single-variable indicator kriging and multiple-variable indicator kriging (MVIK) with the FMDM cut-off values and regulation thresholds for heavy metals. FMDM results indicate that Cr, Cu, Ni and Zn can be individually fitted by a mixture model representing the background and contamination distributions of the four metals in soil. The FMDM cut-off values for contamination caused by the metals are close to the regulation thresholds, except for the cut-off value of Zn. The receiver operating characteristic (ROC) curve validates that indicator kriging and MVIK with FMDM cut-off values can reliably delineate heavy metals contamination, particularly for areas lacking background information and high heavy metal concentrations in soil.  相似文献   
74.
Daily and seasonal variation in the total elemental, organic carbon (OC) and elemental carbon (EC) content and mass of PM2.5 were studied at industrial, urban, suburban and agricultural/rural areas. Continuous (optical Dustscan, standard tapered element oscillating micro-balance (TEOM), TEOM with filter dynamics measurement system), semi-continuous (Partisol filter-sampling) and non-continuous (Dekati-impactor sampling and gravimetry) methods of PM2.5 mass monitoring were critically evaluated. The average elemental fraction accounted for 2-6% of the PM2.5 mass measured by gravimetry. Metals, like K, Mn, Fe, Cu, Zn and Pb were strongly inter-correlated, also frequently with non-metallic elements (P, S, Cl and/or Br) and EC/OC. A high OC/EC ratio (2-9) was generally observed. The total carbon content of PM2.5 ranged between 3 and 77% (averages: 12-32%), peaking near industrial/heavy trafficked sites. Principal component analysis identified heavy oil burning, ferrous/non-ferrous industry and vehicular emissions as the main sources of metal pollution.  相似文献   
75.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N‐viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co‐compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot? 1 for each amendment (equivalent to 50 t ha? 1 of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3‐N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3‐N and inorganic P concentration significantly compared with the non‐legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3 ? could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co‐compost and biosolids, but decreased by coal ash and N‐viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3‐N to increase by about 7 fold, and that of inorganic P by about 23% over the non‐legume. Regarding the metals, biosolids, N‐viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co‐compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   
76.
Biostimulation, bioaugmentation and dual-bioaugmentation strategies were investigated in this study for efficient bioremediation of water co-contaminated with 1,2-dichloroethane (1,2-DCA) and heavy metals, in a microcosm set-up. 1,2-DCA concentration was periodically measured in the microcosms by gas chromatographic analysis of the headspace samples, while bacterial population and diversity were determined by standard plate count technique and Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR–DGGE) analysis, respectively. Dual-bioaugmentation, proved to be most effective exhibiting 22.43%, 26.54%, 19.58% and 30.49% increase in 1,2-DCA degradation in microcosms co-contaminated with As3+, Cd2+, Hg2+ and Pb2+, respectively, followed by bioaugmentation and biostimulation. Dual-bioaugmented microcosms also exhibited the highest increase in the biodegradation rate constant (k1) resulting in 1.76-, 2-, 1.7- and 2.1-fold increase in As3+, Cd2+, Hg2+ and Pb2+ co-contaminated microcosms respectively, compared to the untreated microcosms. Dominant bacterial strains obtained from the co-contaminated microcosms were found to belong to the genera Burkholderia, Pseudomonas, Bacillus, Enterobacter and Bradyrhizobium, previously reported for 1,2-DCA and other chlorinated compounds degradation. PCR–DGGE analysis revealed variation in microbial diversity over time in the different co-contaminated microcosms. Results obtained in this study have significant implications for developing innovative bioremediation strategies for treating water co-contaminated with chlorinated organics and heavy metals.  相似文献   
77.
78.
Within the framework of the MYTITURK project, heavy metals and organic compounds contaminations were assessed in transplanted mussels in eight different bays from the Eastern Aegean coast. Izmir Bay, Canakkale Strait entrance, Saros and Candarli Bay were defined low pollution extent according to Principal Component Analysis taking into metal accumulation. PAHs (Polycyclic Aromatic Hydrocarbons) levels in the range of 29.4–64.2 ng g−1 (dry weight) indicated that PAH contamination level classified as low along the Aegean coast. Concentrations of Aroclor1254 and 1260 were higher in transplanted mussels from Canakkale Strait Outlet due to industrial activities was originated from Marmara Sea. The organochlorinated pesticides such as heptachlor (<0.4 ng g−1), aldrin (<0.30 ng g−1), dieldrin (<0.75 ng g−1), endrin (<2.3 ng g−1) concentrations were homogeneous however, HCB (Hexachlorobenzene) and lindane concentrations were found undetectable level along the coast. DDE/DDT ratio in the caged mussels form Gulluk and Gokova Bay indicated recent DDT (Dikloro difenil trikloroethan) usage in these areas. The residues of organochlorinated compounds in transplanted mussels confirm the long persistence of DDTs. According to world health authorities, the concentration of heavy metals in mussels for the study area can generally be considered not to be at levels posing a health risk except Zn. The levels of POPs indicated that transplanted mussels have a lack of risk for the human health.  相似文献   
79.
This work examined the adoption of a sorbent-assisted ultrafiltration (UF) system for the reduction of Pb(II), Cu(II), Zn(II) and Ni(II) from industrial wastewater. In such a system metals were removed via several processes which included precipitation through the formation of hydroxides, formation of precipitates/complexes among the metal ions and the wastewater compounds, adsorption of metals onto minerals (bentonite, zeolite, vermiculite) and retention of insoluble metal species by the UF membranes. At pH = 6 the metal removal sequence obtained by the UF system was Pb(II) > Cu(II) > Zn(II) > Ni(II) in mg g−1 with significant amount of lead and copper being removed due to chemical precipitation and formation of precipitates/complexes with wastewater compounds. At this pH, zinc and nickel adsorption onto minerals was significant, particularly when bentonite and vermiculite were employed as adsorbents. Metal adsorption onto zeolite and bentonite followed the sequence Zn(II) > Ni(II) > Cu(II) > Pb(II), while for vermiculite the sequence was Ni(II) > Zn(II) > Cu(II) > Pb(II) in mg g−1. The low amount of Pb(II) and Cu(II) adsorbed by minerals was attributed to the low available lead and copper concentration. At pH = 9 the adoption of UF could effectively reduce heavy metals to very low levels. The same was observed at pH = 8, provided that minerals were added. The prevailing metal removal process was the formation of precipitates/complexes with wastewater compounds.  相似文献   
80.
In this study, we tested the effects of dietary nickel on the activity of glutathione S-transferase (GST), esterases, phenoloxidase, and encapsulation in the haemolymph of larvae of the greater wax moth Galleria mellonella. We also explored the effects of dietary nickel on larval resistance to infection by the fungus Beauveria bassiana. Larvae fed a low dose of nickel (10 μg g−1) had significantly higher GST, phenoloxidase activity and encapsulation responses than controls fed on a nickel-free diet. We also found that larvae fed a sublethal dose of nickel (50 μg g−1) had increased GST, esterase activity and encapsulation rates but decreased phenoloxidase activity. Although, a sublethal dose of dietary nickel enhanced innate immunity, we found that this reduced resistance against the real pathogen. Our results suggest that enhanced immunity and detoxification enzyme activity of insects may not be beneficial to resistance to fungal infection. It appears that there is a trade off between different resistance mechanisms in insects under different metal treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号