首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   26篇
  国内免费   132篇
安全科学   123篇
废物处理   40篇
环保管理   34篇
综合类   225篇
基础理论   50篇
污染及防治   105篇
评价与监测   18篇
社会与环境   1篇
  2023年   14篇
  2022年   7篇
  2021年   26篇
  2020年   27篇
  2019年   18篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   42篇
  2014年   24篇
  2013年   44篇
  2012年   32篇
  2011年   38篇
  2010年   12篇
  2009年   21篇
  2008年   31篇
  2007年   44篇
  2006年   32篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   13篇
  2001年   9篇
  2000年   16篇
  1999年   7篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   2篇
  1994年   9篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
471.
This paper describes a numerical and experimental investigation of hydrogen self-ignition occurring as a result of the formation of a shock wave. The shock wave is formed in front of high-pressure hydrogen gas propagating in a tube. The ignition of the hydrogen–air mixture occurs at the contact surface of the hydrogen and oxidant mixture and is due to the temperature increase produced as a result of the shock wave. The required condition for self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. The experimental technique employed was based on a high-pressure chamber pressurized with hydrogen, to the point of a burst disk operating to discharge pressurized hydrogen into a tube of cylindrical or rectangular cross section containing air. A physicochemical model involving gas-dynamic transport of a viscous gas, detailed kinetics of hydrogen oxidation and heat exchange in the laminar approach was used for calculations of high-pressure hydrogen self-ignition. The reservoir pressure range, when a shock wave is formed in the air that has sufficient intensity to produce self-ignition of the hydrogen–air mixture, is found. An analysis of governing physical phenomena based on the experimental and numerical results of the initial conditions (the hydrogen pressure inside the vessel, and the shape of the tube in which the hydrogen was discharged) and physical mechanisms that lead to combustion is presented.  相似文献   
472.
The paper describes the analysis of the potential effects of releases from compressed gaseous hydrogen systems on commercial vehicles in urban and tunnel environments using computational fluid dynamics (CFD). Comparative releases from compressed natural gas systems are also included in the analysis.

This study is restricted to typical non-articulated single deck city buses. Hydrogen releases are considered from storage systems with nominal working pressures of 20, 35 and 70 MPa, and a comparative natural gas release (20 MPa). The cases investigated are based on the assumptions that either fire causes a release via a thermally activated pressure relief device(s) (PRD) and that the released gas vents without immediately igniting, or that a PRD fails. Various release strategies were taken into account. For each configuration some worst-case scenarios are considered.

By far the most critical case investigated in the urban environment, is a rapid release of the entire hydrogen or natural gas storage system such as the simultaneous opening of all PRDs. If ignition occurs, the effects could be expected to be similar to the 1983 Stockholm hydrogen accident [Venetsanos, A. G., Huld, T., Adams, P., & Bartzis, J. G. (2003). Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment. Journal of Hazardous Materials, A105, 1–25]. In the cases where the hydrogen release is restricted, for example, by venting through a single PRD, the effects are relatively minor and localised close to the area of the flammable cloud. With increasing hydrogen storage pressure, the maximum energy available in a flammable cloud after a release increases, as do the predicted overpressures resulting from combustion. Even in the relatively confined environment considered, the effects on the combustion regime are closer to what would be expected in a more open environment, i.e. a slow deflagration should be expected.

Among the cases studied the most severe one was a rapid release of the entire hydrogen (40 kg) or natural gas (168 kg) storage system within the confines of a tunnel. In this case there was minimal difference between a release from a 20 MPa natural gas system or a 20 MPa hydrogen system, however, a similar release from a 35 MPa hydrogen system was significantly more severe and particularly in terms of predicted overpressures. The present study has also highlighted that the ignition point significantly affects the combustion regime in confined environments. The results have indicated that critical cases in tunnels may tend towards a fast deflagration, or where there are turbulence generating features, e.g. multiple obstacles, there is the possibility that the combustion regime could progress to a detonation.

When comparing the urban and tunnel environments, a similar release of hydrogen is significantly more severe in a tunnel, and the energy available in the flammable cloud is greater and remains for a longer period in tunnels. When comparing hydrogen and natural gas releases, for the cases and environments investigated and within the limits of the assumptions, it appears that hydrogen requires different mitigation measures in order that the potential effects are similar to those of natural gas in case of an accident. With respect to a PRD opening strategy, hydrogen storage systems should be designed to avoid simultaneous opening of all PRD, and that for the consequences of the released energy to be mitigated, either the number of PRDs opening should be limited or their vents to atmosphere should be restricted (the latter point would require validation by a comprehensive risk assessment).  相似文献   

473.
An accidental explosion occurred in a waste storage tank at an incineration plant in Kawasaki, Japan, on May 11, 1997. The accident was caused primarily by unintended mixing involving reactive chemicals, such as organic peroxides (POs) and acrylonitrile (AN). The PO initiated polymerization of AN and the heat released during the polymerization led to a runaway reaction and explosion. POs are widely used in the chemical industry and can be self-reactive and hazardous when mixed with other chemicals such as acids and alkalis. The goal of this study was to obtain a better understanding of the mixing hazard of chemicals through an evaluation of POs with other chemicals using conventional experimental techniques such as glass test-tube tests, Dewar vessel tests, and differential scanning calorimetry (DSC). Seven types of POs were mixed with AN. Test results were classified into four ranks based on the hazard criteria. In addition, di(2-ethylhexyl)-peroxydicarbonate/AN mixtures were investigated in detail and the influences of the mixing ratio and the stirring rate were examined.  相似文献   
474.
475.
湿式双氧水氧化处理染料中间体H-酸钠盐溶液的研究   总被引:8,自引:1,他引:7  
在0.5 L压力反应器内,对染料中间体H-酸钠盐溶液进行湿式双氧水氧化(WPO)及湿式双氧水催化氧化(CWPO)降解处理.分别考察反应时间、双氧水用量、温度、进水pH值和催化剂等对反应过程与对象污染物降解的影响规律.结果表明,WPO能在温和的条件下降解难于生物降解的有机物,在温度为110℃、压力为0.5 MPa、双氧水用量为理论需用量、进水pH=5的条件下,处理含10 g/L H-酸钠盐的H-酸盐溶液的COD和色度去除率分别为62.0%和98.7%;采用非均相Cu/Ni复合催化剂,在同样操作条件下,CWPO对同一废水的COD和色度去除率分别可达到92.0%和99.9%.表明催化剂的存在大大提高了WPO的氧化效果.  相似文献   
476.
Fenton法处理中年垃圾渗滤液双氧水利用率及处理效率   总被引:7,自引:4,他引:3  
采用Fenton法氧化处理中年垃圾渗滤液生化出水,对影响双氧水利用率及CODCr去除率的各种因素,进行了研究。结果表明:Fenton法氧化处理中年垃圾渗滤液生化出水的最佳初始pH值为7,H2O2/Fe2+为4∶1,双氧水的经济投加量为0.05 mol/L,反应时间为3.5 h,混合催化剂可提高双氧水的利用率。CODCr去除率可达80.5%,双氧水利用率为153.9%,处理出水可达到垃圾渗滤液的二级排放标准。  相似文献   
477.
Alloy dust generated from automobile wheel hub grinding, after entering the wet dust collector, will react with water to produce hydrogen, thus exposing the entire ventilation and dust removal system to potential hydrogen explosion. In this paper, the inhibition mechanism and kinetic characteristics of different concentrations of L-Aspartic acid (L-Asp) on the reaction of Al0.9Mg0.1 alloy with water were studied with respect to adsorption morphology, chemical kinetic modeling and molecular dynamics (MD), using L-Asp as the environmentally-safe hydrogen inhibitor. The results show that within a given temperature interval, the hydrogen production rate of Al0.9Mg0.1 alloy dust decreases with increasing L-Asp concentration. When the L-Asp concentration exceeds 1.0g/L, the hydrogen evolution rate is almost zero. The calculated results of chemical kinetics agree with the Langmuir adsorption model, confirming that L-Asp is an ideal monolayer physical adsorption system on the surface of alloy particles. The FTIR and MD simulation results show that –NH2 and –COOH groups in L-Asp molecules contribute greatly to the adsorption. The research results of this paper can help fundamentally avoid hydrogen generation in wet dust collectors and guarantee intrinsic safety.  相似文献   
478.
The semi-batch reactors (SBRs) system, which is widely used in industrial processes, possesses an intrinsic parametric sensitivity, in which infinitesimal disturbances of input parameters can result in large variations in output variables. In this work, local parametric sensitivity analysis (PSA) was used to understand parameter variations and global PSA was conducted to examine the interaction of input parameters. The effects of these parameters on the output of the system model were analyzed based on the Monte Carlo method with Latin hypercube sampling and the extended Fourier amplitude sensitivity test model. The results showed that the evolution of thermal behaviors in SBRs were observed: marginal ignition; thermal runaway; and the quick onset, fair conversion, and smooth temperature profile. The threshold point of transition from marginal ignition to thermal runaway was at the maximal value of local sensitivity, for which the slope with respect to cooling temperature equaled zero. Moreover, the sequence of the global sensitivity of six common input parameters was computed and evaluated. The reliability of the numerical models was verified by using our previous experimental results of cyclohexanone peroxide reaction. This comprehensive sensitivity analysis could provide valuable operating information to improve chemical process safety.  相似文献   
479.
用H2O2作为氧化剂,在595~704 K、18~30 MPa条件下,对活性染料废水进行超临界水氧化反应.实验结果表明,COD去除率随温度、压力、停留时间和氧化剂量的增加而上升,在704 K、28 MPa时,COD去除率可达到98.4%,停留时间小于35 s.COD、H2O2和水的反应级数分别为1、0和0;反应活化能Ea为37.21 kJ/mol;指前因子A为76.69 s-1.  相似文献   
480.
Dimethyl disulphide (DMDS) removal was investigated in a compact scrubber (hydraulic residence time ≈20 ms), composed of a wire mesh packing structure where liquid and gas flow at co-current and high gas superficial velocity (>12 m s−1). In order to regenerate the scrubbing liquid and to maintain a driving force in the scrubber, ozone and hydrogen peroxide were added to water since they allow the generation of nonselective and highly reactive species, hydroxyl radicals HO. Three ways of reagent distribution were tested. The influence of several parameters (liquid flow rate(s), ozone flow rate, pH and reagent concentrations) was investigated. The best configuration was obtained when ozone is transferred in the scrubbing liquid before introduction at the top of the scrubber simultaneously with the hydrogen peroxide solution, allowing to generate hydroxyl radical in the scrubber. With this configuration, DMDS removal could be increased from 16% with water to 34% at the same gas and liquid flow rates in the scrubber showing the potentiality of advanced oxidation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号