首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   42篇
  国内免费   180篇
安全科学   167篇
废物处理   45篇
环保管理   59篇
综合类   347篇
基础理论   74篇
污染及防治   117篇
评价与监测   36篇
社会与环境   1篇
灾害及防治   1篇
  2023年   14篇
  2022年   14篇
  2021年   29篇
  2020年   28篇
  2019年   23篇
  2018年   16篇
  2017年   18篇
  2016年   26篇
  2015年   54篇
  2014年   30篇
  2013年   40篇
  2012年   60篇
  2011年   51篇
  2010年   25篇
  2009年   52篇
  2008年   37篇
  2007年   54篇
  2006年   40篇
  2005年   24篇
  2004年   38篇
  2003年   31篇
  2002年   20篇
  2001年   16篇
  2000年   21篇
  1999年   17篇
  1998年   13篇
  1997年   10篇
  1996年   9篇
  1995年   4篇
  1994年   13篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
排序方式: 共有847条查询结果,搜索用时 125 毫秒
711.
通过近三年实验室采用亚甲基蓝分光光度法测定硫化物校准曲线制作的一系列原始数据的收集,并通过数理统计方法对校准曲线、-余标准偏差、斜率扩展不确定度、截距扩展不确定度开展了详细讨论,得出亚甲基蓝分光光度法测定硫化物校准曲线斜率(b)参考范围为:0.019 1±0.00044,截距(a)参考值范围:0.003 3±0.005 0.此结果对实验室分析人员判定硫化物项目校准曲线制作是否合格具有一定的参考价值.  相似文献   
712.
为了掌握自燃性低的FeS的氧化自燃过程,为预防FeS自燃事故的发生提供理论基础,对不同纯度化学试剂FeS,利用定温、程序升温试验方法,结合XRD、TG-DTA、TG-DSC及化学分析的结果,研究其氧化反应历程.结果表明,不同纯度FeS氧化时,试样都经历了先失重后增重再失重的变化过程.首先失重的是试样中易挥发的杂质,250~300℃时试样质量开始增加,意味着FeS氧化反应的开始.在325~400℃范围内FeS氧化反应复杂,涉及化学反应多,试样质量随试验时间延长而增加,直至恒重,增重的主要物质经XRD表征和化学分析为FeSO4.试验温度达到480℃时,试样质量先增加后减小,增重的主要物质为Fe2(SO4)3,该温度下Fe2(SO4)3分解速率慢.在550~650℃内,Fe2(SO4)3热分解或FeS的完全氧化反应引起试样质量迅速减小.试验温度高于660℃时FeS发生完全氧化反应,最终产物为Fe2O3.具有不同氧化反应活性的FeS,其氧化反应历程也不同.  相似文献   
713.
在碱性介质中,鲁米诺和过氧化氢能产生稳定的发光信号,Pb2+-EDTA络合物对鲁米诺-过氧化氢体系的化学发光产生微弱的抑制作用,而表面活性剂吐温-80的加入可以改变发光体系的微环境性质,从而对化学发光体系起到增敏作用。据此建立测定环境水样中痕量Pb2+的流动注射化学发光分析方法。此方法用于测定环境水样中Pb2+的含量,具有检出限高,操作简便,分析速度快等优点。  相似文献   
714.
A numerical simulation of the spontaneous ignition of high-pressure hydrogen in a duct with two obstacles on the walls is conducted to explore the spontaneous ignition mechanisms. Two-dimensional rectangular ducts are adopted, and the Navier–Stokes equations with a detailed chemical kinetic mechanism are solved by using direct numerical simulations. In this study, we focus on the effects of the initial pressure of hydrogen and the position of the obstacles on the ignition mechanisms. Our results demonstrate that the presence of obstacles significantly changes the spontaneous ignition mechanisms producing three distinct ignition mechanisms. In addition, the position of the obstacles drastically changes the interaction of shock waves with the contact surface, and spontaneous ignition may take place at a relatively low pressure in some obstacle positions, which is attributed to the propagation direction and interaction timing of two reflected shock waves.  相似文献   
715.
A series of medium-scale experiments on vented hydrogen deflagration was carried out at the KIT test side in a chamber of 1 × 1 × 1 m3 size with different vent areas. The experimental program was divided in three series: (1) uniform hydrogen–air mixtures; (2) stratified hydrogen–air mixtures within the enclosure; (3) a layer deflagration of uniform mixture. Different uniform hydrogen–air mixtures from 7 to 18% hydrogen were tested with variable vent areas 0.01–1.0 m2. One test was done for rich mixture with 50% H2. To vary a gradient of concentration, all the experiments with a stratified hydrogen–air mixtures had about 4%H2 at the bottom and 10 to 25% H2 at the top of the enclosure. Measurement system consisted of a set of pressure sensors and thermocouples inside and outside the enclosure. Four cameras combined with a schlieren system (BOS) for visual observation of combustion process through transparent sidewalls were used. Four experiments were selected as benchmark experiments to compare them with four times larger scale FM Global tests (Bauwens et al., 2011) and to provide experimental data for further CFD modelling. The nature of external explosion leading to the multiple pressure peak structure was investigated in details. Current work addresses knowledge gaps regarding indoor hydrogen accumulations and vented deflagrations. The experiments carried out within this work attend to contribute the data for improved criteria for hydrogen–air mixture and enclosure parameters to avoid unacceptable explosion overpressure. Based on theoretical analysis and current experimental data a further vent sizing technology for hydrogen deflagrations in confined spaces should be developed, taking into account the peculiarities of hydrogen–air mixture deflagrations in presence of obstacles, concentration gradients of hydrogen–air mixtures, dimensions of a layer of flammable cloud, vent inertia, etc.  相似文献   
716.
One of conservation transfer methods for such widely-used gases as natural gas and hydrogen is buried pipelines. Safety of these pipelines is of great importance due to potential risks posed by inefficiencies of the pipelines. Therefore, an accurate understanding of release and movement characteristics of the leaked gas, i.e. distribution and speed within soil, the release to the ground surface, the movement of hydrogen gas through the ground, gas underground diffusion, gas dispersion in atmosphere, and following consequences, are very important in order to determine underground dispersion risks. In the present study, consequences of gas leakage within soil were evaluated in two sub-models, i.e. near-field and far-field, and a comprehensive model was proposed in order to ensure safety of buried gas supply pipelines. Near-field model which is related to soil and ground and its output is the gas released at different points and times from ground surface and it was adopted as input of far-field sub-model which is dispersion model in atmosphere or an open space under the surface. Validation of near-field sub-model was performed by the experimental data obtained by Okamoto et al. (2014) on full-scale hydrogen leakage and then, possible scenarios for far-field sub-model were determined.  相似文献   
717.
Analytical models or abacus are of importance to predict explosion effects in open and congested areas for industrial safety reasons. The goal of this work is to compare overpressure and flame speed values of small-scale deflagration experiments to predicted values from the TNO multi-energy (TNO ME) method and the Baker-Strehlow-Tang (BST) method. Experiments were performed in cylindrical congested volumes of hydrogen – air mixtures varying from 1.77 L to 7.07 L. The reactivity was controlled by the equivalence ratio of hydrogen-air mixtures, ranging from 0.5 to 2.5. The congestion was realized with varying numbers of grid layers and configurations. The influence of the obstacle density and the importance of the mixture reactivity to choose the strength index in order to predict the effects of an explosion has been highlighted for the TNO ME method. Predictive flame speed values from the BST method are in accordance with almost half of the experimental results and the method is conservative in most tested configurations. The use of the TNO ME method has been validated on a small-scale experiment to predict maximal overpressures generated by the deflagration of medium and large-scale H2/air clouds.  相似文献   
718.
Gasification of waste plastics by steam reforming in a fluidized bed   总被引:1,自引:1,他引:0  
The process of producing synthetic gas from waste plastics by steam reforming was investigated. To evaluate this process, the steam reforming of the oils derived from low-density polyethylene and polystyrene were carried out using a laboratory-scale fluidized bed of Ni-Al2O3 catalysts. The performance of gasification in terms of carbon conversion, gas yield, and gas compositions was examined. Although oils derived from plastics contain many kinds of heavy hydrocarbons and aromatics, they were well gasified at temperatures above 1023 K with a steam/carbon ratio of 3.5 and a weight hourly space velocity of 1 h−1. The hydrogen content of the product gas was very high at approximately 72 vol% for polyethylene-derived oil and 68 vol% for polystyrene-derived oil. These compositions agreed well with the values calculated from chemical equilibrium.  相似文献   
719.
The method described in this paper enabled reliable and accurate positioning of an overdriven detonation by calculation of shock wave velocities (detonation and retonation) for hydrogen explosions in a closed 18 m long horizontal DN150 pipe. This enabled an empirical correlation between the ignition position and the run-up distance to DDT to be determined. It was shown that the initial ability of the flame to expand unobstructed and the piston-like effect of burnt gas expanding against the closed end of the tube contributed to initial flame acceleration and hence were able to affect the run-up distance to overdriven detonation. Flame speeds and rates of initial pressure rise were also used to explain how these two competing effects were able to produce a minimum in the run-up distance to DDT. The shortest run-up distance to DDT, relative to the ignition position, for this pipe and gas configuration was found when the ignition position was placed 5.6 pipe diameters (or 0.9 m) from the closed pipe end. The shortest run-up distance to DDT relative to the end of the pipe was recorded when the ignition source was placed 4.4 pipe diameters or 0.7 m from the pipe end.  相似文献   
720.
A number of mitigation techniques exist to reduce the emissions of pollutant gases and greenhouse gases(GHGs) from anaerobic storage of livestock manure. Nanoparticle(NP)application is a promising mitigating treatment option for pollutant gases, but limited research is available on the mode of NP application and their effectiveness in gaseous emission reduction. In this study, zinc silica nanogel(ZnSNL), copper silica nanogel(CuSNL), and N-acetyl cysteine(NACL) coated zinc oxide quantum dot(Qdot) NPs were compared to a control lacking NPs. All three NPs tested significantly reduced gas production and concentrations compared to non-treated manure. Overall, cumulative gas volumes were reduced by 92.73%–95.83%, and concentrations reduced by 48.98%–99.75% for H_2S, and 20.24%–99.82% for GHGs. Thus, application of NPs is a potential treatment option for mitigating pollutant and GHG emissions from anaerobically stored manure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号