首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   7篇
  国内免费   34篇
安全科学   97篇
废物处理   14篇
环保管理   26篇
综合类   108篇
基础理论   32篇
污染及防治   51篇
评价与监测   18篇
社会与环境   1篇
  2023年   11篇
  2022年   6篇
  2021年   16篇
  2020年   16篇
  2019年   11篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   27篇
  2014年   9篇
  2013年   22篇
  2012年   16篇
  2011年   17篇
  2010年   5篇
  2009年   16篇
  2008年   23篇
  2007年   25篇
  2006年   15篇
  2005年   7篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   4篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   9篇
  1996年   4篇
  1995年   1篇
  1994年   8篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
排序方式: 共有347条查询结果,搜索用时 85 毫秒
11.
There has been a growing demand in the fabrication of dissimilar metal parts for application in the automotive, aerospace, defense, chemical and nuclear industries. Welding of dissimilar materials can be accomplished via impact welding, which can minimize the formation of a continuous inter-metallic phase, while chemically bonding dissimilar metals. This paper discusses an innovative technique for bonding dissimilar metals by chemically produced hydrogen energy by reacting aluminum powder and water. Experiments were carried out to study impact bond characteristics using copper and stainless steel cylindrical billets. The influence of nosed flyer billet angle and billet mass on bonding characteristics were studied. The test results have demonstrated that the nosed flyer billet angle has significant influence on wavy bond patterns at the interface. Among the three flyer billet nose angles of 9°, 12° and 15°, the billets with a flyer angle of 15° resulted in a complete wave morphological pattern along the whole sample cross-section. This study shows the potential of developing a cost effective system/machinery where discrete metal parts can be bonded at near net shape.  相似文献   
12.
硫化氢是油气田伴生气中的有害组分。在含硫油气田的采出水中,硫化氢的存在对于安全生产和和油田环境均会产生危害。采出水经处理后通常需作为地层回注水使用,由于油气生产的特殊性,常用的硫化氢脱除方法在使用中受到限制,探索适合于油气田生产的水处理方法十分必要。本文探讨了通常可用于油田水中硫化氢脱除的各种方法,对比了各类方法的优缺点,提出以次氯酸钠为主要脱硫剂的水处理方法,通过对模拟采出水的室内试验,证明次氯酸法可以快速有效地去除采出水中的硫化氢,并提出了消除过量氧化剂的后续处理方法。实验表明经处理后的水质可以达到油气田回注水质要求,处理成本较低。  相似文献   
13.
By varying inert gas content, equivalence ratio and initial pressure, this study is aimed at investigating flame propagation behaviors and explosion pressure characteristics near suppression limit. For carbon dioxide, the weakest flame floating phenomenon is observed at Φ = 1.5 and the buoyant instability is enhanced when the equivalent ratio deviates to the rich and lean sides. For nitrogen, the buoyant instability decreases with increasing equivalent ratio. Both maximum explosion pressure and maximum pressure rise rate increase firstly and then decrease with the increase of equivalence ratio, and they decrease significantly with increasing content of carbon dioxide and nitrogen. For carbon dioxide, the critical suppression ratio of Φ = 0.6, 0.8, 1.0, 1.5 and 2.0 is 7.50, 7.18, 5.74, 3.83, and 2.87. For nitrogen, the critical suppression ratio of Φ = 0.6, 0.8, 1.0, 1.5 and 2.0 is 15.83, 11.87, 9.50, 6.33 and 4.75. Compared to nitrogen, the carbon dioxide is more effective on suppressing hydrogen explosion pressure. The adiabatic flame temperature, thermal diffusivity and mole fraction of active radicals continue to decrease with increasing content of carbon dioxide and nitrogen, which contributes to the decrease of laminar burning velocity.  相似文献   
14.
生物还原-化学沉淀法自烟气中的SO2制备ZnS   总被引:1,自引:1,他引:0  
采用生物还原—化学沉淀法自烟气中的SO2制备ZnS,将含有Zn(OH)2杂质的粗品ZnS通过化学提纯制得高纯度ZnS。实验结果表明,采用NH4C l-NH3.H2O混合液对含有Zn(OH)2杂质的粗品ZnS进行提纯的优化条件为:每500m g粗品ZnS加入NH4C l与NH3.H2O摩尔比为1∶1、两组分浓度均为3.0m o l/L的10mLNH4C l-NH3.H2O混合液。X射线衍射分析表明,提纯后的产物粉末全部为ZnS,其纯度与ZnS标准试样相当。  相似文献   
15.
硫化物生物氧化脱硫技术研究现状   总被引:4,自引:0,他引:4  
苏静 《环境技术》2006,24(1):26-28,46
介绍了近年来国内外硫化物生物氧化为单质硫的各种脱硫技术.分析总结了硫化物生物氧化为单质硫工艺的各种影响因素,包括氧硫比、溶解氧浓度、硫化物浓度、化学氧化、微生物菌种、pH值、温度等因素.提出了生物氧化脱硫技术的发展前景.该技术将脱硫和单质硫的回收和为一体,是一种安全、低成本将含硫废液变废为宝的工艺技术.  相似文献   
16.
This study presents a comparative analysis of sizing of metal hydride tank filled with different alloys. Alloys include solid solutions and intermetallic compounds of the generic families AB5, AB2, AB, A2B. The effects of the different alloys on the sizing of metal hydride hydrogen storage tanks are complicated and depend on many factors. In this paper, a thermoeconomic optimization analysis with a simple algebraic formula was presented for the estimation of optimum metal hydride tank surface area for heat transfer enhancement. The optimum area of the metal hydride tank filled with commercially available different alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) was evaluated and compared by the developed method. The optimum net savings and the value of payback were determined for four alloys. It is found that mathematical model can be employed for the determination of optimum metal hydride tank design and increasing net savings according to alloy types. The optimum areas of the tanks filled with four alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) were calculated as 0.136, 0.130, 0.133, and 0.173 m2, respectively. The optimum net savings for tanks filled with four alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) are about 461.0, 409.3, 419.6, and 979.6 $ and the values of payback are about 1.98, 2.1, 2.17, and 1.37 years, respectively. Excessive area of the metal hydride tank would not be as economical as the optimum tank area. Thermal management of metal hydride tank must be designed for optimum points calculated at which maximum savings occur.  相似文献   
17.
Background, aim, and scope  Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. Materials and methods  The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of 1H NMR. Results  Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. Discussion  The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Conclusions  The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Recommendations and perspectives  Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals  相似文献   
18.
Hydrogen sulphide, ammonia, nitrogen dioxide, mercaptans and sulphur dioxide (H2S, NH3, NO2, R-SH, SO2) concentrations were measured at the location in the vicinity of the waste dump to determine the air pollution level of these pollutants prior to the operation of the Mobile Thermal Treatment Plant. Samples were collected over one year period. Seasonal differences, and the influence of meteorological parameters (temperature, relative humidity, pressure and wind direction) on the air pollution levels were studied. Results show relatively low concentrations of H2S, NO2, R-SH and SO2, while NH3 levels were higher compared to the guideline values. Good weather conditions (high air pressure and low relative humidity) are connected to long range transport of NO2, while higher temperatures result in elevated NH3 and R-SH concentrations. Because of the predominant northeast wind direction (the same as the waste dump direction), the contribution of air pollution from the direction of the waste dump at the measuring site is significant, but that does not necessarily mean that the pollutants originated from that source.  相似文献   
19.
The stabilization of hydrogen peroxide was investigated as a basis for enhancing its downgradient transport and contact with contaminants during catalyzed H(2)O(2) propagations (CHP) in situ chemical oxidation (ISCO). Stabilization of hydrogen peroxide was investigated in slurries containing four characterized subsurface solids using phytate, citrate, and malonate as stabilizing agents after screening ten potential stabilizers. The extent of hydrogen peroxide stabilization and the most effective stabilizer were solid-specific; however, phytate was usually the most effective stabilizer, increasing the hydrogen peroxide half-life to as much as 50 times. The degree of stabilization was nearly as effective at 10 mM concentrations as at 250 mM or 1 M concentrations. The effect of stabilization on relative rates of hydroxyl radical activity varied between the subsurface solids, but citrate and malonate generally had a greater positive effect than phytate. The effect of phytate, citrate, and malonate on the relative rates of superoxide generation was minimal to somewhat negative, depending on the solid. The results of this research demonstrate that the stabilizers phytate, citrate, and malonate can significantly increase the half-life of hydrogen peroxide in the presence of subsurface solids during CHP reactions while maintaining a significant portion of the reactive oxygen species activity. Use of these stabilizers in the field will likely improve the delivery of hydrogen peroxide and downgradient treatment during CHP ISCO.  相似文献   
20.
An accidental hydrogen release within an equipment enclosure may result in the presence of detonable mixture in a confined environment. From a safety standpoint, it is then useful to assess the potential for damage. In that context, numerical simulation of the sequence of events subsequent to detonative ignition provides a useful tool, although with obvious limitations. This article describes the procedure, summarizes two case studies, and reviews the limitations. First, a hydrogen dispersion pattern is obtained from numerical simulation of dispersion, using a commercial package designed primarily for incompressible flow. This dispersion cloud is then used as the initial condition in an inviscid, compressible, reactive flow simulation. To force detonative ignition, a sufficiently large amount of energy is deposited in a small region that corresponds to the ignition location. Chemistry is modeled using a single step Arrhenius model. Because the wave thickness is small compared with the computational domain, a fine mesh is needed, limiting the practicality of the process to two-dimensional geometries. This is the most significant limitation; it is conservative. The two cases described in the paper include an electrolyzer, in which a small release occurs, leading potentially to some damage to the enclosure, and a reformer, in which the consequences are potentially more serious.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号