首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   4篇
  国内免费   116篇
安全科学   1篇
废物处理   10篇
环保管理   25篇
综合类   171篇
基础理论   70篇
污染及防治   78篇
评价与监测   17篇
社会与环境   1篇
  2023年   17篇
  2022年   31篇
  2021年   17篇
  2020年   17篇
  2019年   34篇
  2018年   24篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   5篇
  2009年   13篇
  2008年   26篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
1.
Anaerobic digestion (AD) of swine manure (SM) commonly shows low biogas output and unsatisfactory economic performance. In this study, thermophilic AD (TAD, 50 ± 1 °C) was combined with thermal hydrolysis pretreatment (THP, 170 °C/10 bar), to investigate its potential for maximizing biogas yield, securing successful digestion and microbial diversity, as well as improving energy balance. Four lab-scale continuously stirred tank reactors were operated for 300 days and compared with each other, i.e., reactor 1 (raw SM fed in mesophilic AD: RSM-MAD), reactor 2 (THP-treated SM fed in MAD: TSM-MAD), reactor 3 (RSM-TAD), and reactor 4 (TSM-TAD). The results showed that THP was efficient to increase methane production of SM, TSM-TAD mode led to the highest methane yield (129.8 ± 40.5 mL-CH4/g-VS/day) among the tests (p < 0.05). Although TAD was more likely to induce free ammonia (> 700 mg/L) or volatile fatty acids (> 6000 mg/L) accumulation compared with MAD in start-up phase, TSM-TAD treatment mode behaved a sustainable digestion process in a long-term operation. For TSM-TAD scenario, higher Shannon–Weaver (3.873) and lower Simpson index (0.061) indicated this mode ensured and enlarged the diversity of bacteria communities. Phylum Bathyarchaeota was dominant (59.3%−90.0%) in archaea community, followed by Euryarchaeota in the four reactors. RSM-MAD treatment mode achieved the highest energy output (4.65 GJ/day), TSM-TAD was less effective (−17.38 GJ/day) due to increased energy demands. Thus improving the energetic efficiency of THP units is recommended for the development of TSM-TAD treatment mode.  相似文献   
2.
SBR生物反应器出水溶解态有机物性质特点研究   总被引:2,自引:0,他引:2  
研究中考察了SBR生物反应器处理实际生活污水过程中,反应器内部溶解性有机物的变化情况,重点分析了污泥龄对于SBR反应器出水溶解态有机物性质特点的影响.研究结果表明,生物降解过程中,以分子量650Da、1700Da和2000Da为代表的腐殖质类有机物逐渐积累,小分子量有机物(<200Da)逐渐转化为具有中间分子量(500...  相似文献   
3.
影响微生物絮凝剂产生的因素研究   总被引:24,自引:3,他引:24  
本文通过改变培养基的种类、培养基的碳源、氮源、无机盐离子来选择絮凝剂产生菌“Dfjm-1”高效低廉的培养基 ;通过改变培养基初始 p H值、培养温度、培养过程中的通气量等因素 ,得出“Dfjm-1”菌株产生絮凝剂的最佳条件。Dfjm-1产生絮凝剂的最佳因素为 :培养基初始 p H值为 6.5~ 7.0 ,培养温度为 3 0℃ ,培养时间为 60小时左右 ,通气量为 :早期 :2 50 r/ min;中期 1 50 r/ min;后期 1 0 0~ 1 50 r/ min  相似文献   
4.
采用SBR法处理麻生物脱胶废水,实验考察了溶解氧、曝气时间、污泥负荷与处理效果的关系。结果表明,在限制性曝气及COD  相似文献   
5.
Aerobic granule is a special microbial aggregate associated with biofilm structure. The formation of aerobic granular sludge is primarily depending on its bacterial community and relevant microbiological properties. In this experiment, a strain with high microbial attachment was isolated from aerobic granular sludge, and the detailed characteristics were examined. Its high attachment ability could reach 2.34 (OD600nm), while other low attachment values were only around 0.06-0.32, which indicated a big variation among the different bacteria. The strain exhibited a very special morphology with many fibric fingers under SEM observation. A distinctive behaviour was to form a spherical particle by themselves, which would be very beneficial for the formation and development of granular sludge. The EPS measurement showed that its PN content was higher than low attachment bacteria, and 3D-EEM confirmed that there were some different components. Based on the 16S rRNA analysis, it was identified to mostly belong to Stenotrophomonas. Its augmentation to particle sludge cultivation demonstrated that the strain could significantly promote the formation of aerobic granule. Conclusively, it was strongly suggested that it might be used as a good and potential model strain or chassis organism for the aerobic granular sludge formation and development.  相似文献   
6.
As a special biofilm structure, microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge (AGAS). This experiment was to investigate the biological effect of Ca2 +, Mg2 +, Cu2 +, Fe2 +, Zn2 +, and K+ which are the most common ions present in biological wastewater treatment systems, on the microbial attachment of AGAS and flocculent activated sludge (FAS), from which AGAS is always derived, in order to provide a new strategy for the rapid cultivation and stability control of AGAS. The result showed that attachment biomass of AGAS was about 300% higher than that of FAS without the addition of metal ions. Different metal ions had different effects on the process of microbial attachment. FAS and AGAS reacted differently to the metal ions as well, and in fact, AGAS was more sensitive to the metal ions. Specifically, Ca2 +, Mg2 +, and K+ could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations, Cu2 +, Fe2 +, and Zn2 + were also beneficial to the microbial attachment of FAS at low concentrations, but Cu2 +, Fe2 +, and Zn2 + greatly inhibited the attachment process of AGAS even at extremely low concentrations. In addition, the acylated homoserine lactone (AHL)-based quorum sensing system, the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions. As all these parameters had close relationships with the microbial attachment process, the microbial attachment may be affected by changes of these parameters.  相似文献   
7.
A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.  相似文献   
8.
Biodissolution experiments on cinnabar ore(mercury sulphide and other sulphide minerals,such as pyrite) were performed with microorganisms extracted directly from soil. These experiments were carried out in closed systems under aerobic and anaerobic conditions with 2 different soils sampled in French Guyana. The two main objectives of this study were(1) to quantify the ability of microorganisms to mobilize metals(Fe, Al, Hg) during the dissolution of cinnabar ore, and(2) to identify the links between the type and chemical properties of soils, environmental parameters such as season and the strategies developed by indigenous microorganisms extracted from tropical natural soils to mobilize metals.Results indicate that microbial communities extracted directly from various soils are able to(1) survive in the presence of cinnabar ore, as indicated by consumption of carbon sources and,(2) leach Hg from cinnabar in oxic and anoxic dissolution experiments via the acidification of the medium and the production of low molecular mass organic acids(LMMOAs). The dissolution rate of cinnabar in aerobic conditions with microbial communities ranged from 4.8 × 10~(-4) to 2.6 × 10~(-3) μmol/m~2/day and was independent of the metabolites released by the microorganisms. In addition, these results suggest an indirect action by the microorganisms in the cinnabar dissolution. Additionally, because iron is a key element in the dynamics of Hg, microbes were stimulated by the presence of this metal,and microbes released LMMOAs that leached iron from iron-bearing minerals, such as pyrite and oxy-hydroxide of iron, in the mixed cinnabar ore.  相似文献   
9.
通过选取假单胞杆菌、鲍曼不动杆菌以及芽孢杆菌3种耐药菌作为研究对象,研究紫外光变化对这3种耐药菌的去除效果,得出较好的紫外消毒条件,应用到实际的污水处理厂消毒过程中。结果表明,紫外消毒对3种耐药菌都有很好的灭活效果。  相似文献   
10.
• Chlorine addition enhanced the release of TOC, TN from the sediment. • Chlorine has a long-term negative effect on microbial richness. • Usually enzymes lose activity, and expression of genes was downregulated. • Carbon degradation and nitrification might be strongly inhibited. Chlorine is often used in algal removal and deodorization of landscape waters, and occasionally used as an emergency treatment of heavily polluted sediments. However, the ecological impact of this practice has not been fully studied and recognized. In this study, NaClO at 0.1 mmol/g based on dry weight sediment was evenly mixed into the polluted sediment, and then the sediment was incubated for 150 days to evaluate its microbial effect. Results showed that NaClO addition enhanced the release of TOC, TN, Cr and Cu from the sediment. The microbial richness in the examined sediment decreased continuously, and the Chao1 index declined from 4241 to 2731, in 150 days. The microbial community composition was also changed. The abundance of Proteobacteria and Bacteroidetes increased to 54.8% and 4.2% within 7 days compared to the control, and linear discriminant analysis (LDA) showed gram-negative bacteria and aerobic bacteria enriched after chlorination. The functional prediction with PICRUSt2 showed the functions of the microbial community underwent major adjustments, and the metabolic-related functions such as carbon metabolism, including pyruvate and methane metabolisms were significantly inhibited; besides, 15 out of 22 analyzed key enzymes involved in C cycling and 6 out of 12 key enzymes or genes involved in N cycling were strongly impacted, and the enzymes and genes involved in carbon degradation and denitrification showed remarkable downregulation. It can be concluded that chlorination posed a seriously adverse effect on microbial community structure and function. This study deepens the understanding of the ecological effects of applying chlorine for environmental remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号