首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   4篇
  国内免费   116篇
安全科学   1篇
废物处理   10篇
环保管理   25篇
综合类   171篇
基础理论   70篇
污染及防治   78篇
评价与监测   17篇
社会与环境   1篇
  2023年   17篇
  2022年   31篇
  2021年   17篇
  2020年   17篇
  2019年   34篇
  2018年   24篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   5篇
  2009年   13篇
  2008年   26篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
排序方式: 共有373条查询结果,搜索用时 0 毫秒
181.
The impact of repeated carbendazim (CARB) applications on the extent of CARB dissipation, the microbial diversity, the community level physiological profile (CLPP), and the enzymatic activity within the biomixture of an on-farm biopurification system was evaluated. After three successive CARB applications, the CARB dissipation efficiency was high; the efficiency of dissipation was 87%, 94% and 96% after each application, respectively. Although microbial enzymatic activity was affected significantly by CARB application, it could recover after each CARB pulse. Likewise, the numbers of cultivable bacteria, fungi and actinomycetes (as measured in CFUs) were slightly affected by the addition of CARB, but the inhibitory effect of the pesticide application was temporary. Denaturing gradient gel electrophoresis (DGGE) and Biolog Ecoplate assays demonstrated that the microbial populations remained relatively stable over time when compared to the control. The results obtained herein therefore demonstrate the high dissipation capacity of this biomixture and highlight the microbiological robustness of this biological system.  相似文献   
182.
• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system. • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles. • Functional microbial communities could be enriched in coupled anaerobic system. • Possible synergistic mechanism involved in enhanced dechlorination was proposed. Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.  相似文献   
183.
• Fungi enable the constant UASB operation even at OLR of 25.0 kg/(m3×d). • The COD removal of 85.9% and methane production of 5.6 m3/(m3×d) are achieved. • Fungi inhibit VFAs accumulation and favor EPS generation and sludge granulation. • Fungi enrich methanogenic archaea and promote methanogenic pathways. Anaerobic digestion is widely applied in organic wastewater treatment coupled with bioenergy production, and how to stabilize its work at the high organic loading rate (OLR) remains a challenge. Herein, we proposed a new strategy to address this issue via involving the synergetic role of the Aspergillus sydowii 8L-9-F02 immobilized beads (AEBs). A long-term (210-day) continuous-mode operation indicated that the upflow anaerobic sludge bed (UASB) reactor (R1, with AEBs added) could achieve the OLR as high as 25.0 kg/(m3×d), whereas the control reactor (R0, with AEBs free) could only tolerate the maximum OLR of 13.3 kg/(m3×d). Remarkably, much higher COD removal (85.9% vs 23.9%) and methane production (5.4 m3/(m3×d) vs 2.2 m3/(m3×d)) were achieved in R1 than R0 at the OLR of 25.0 kg/(m3×d). Such favorable effect results from the facts that fungi inhibit VFAs accumulation, favor the pH stabilization, promote the generation of more extracellular polymeric substance, and enhance the sludge granulation and settleability. Moreover, fungi may enhance the secretion of acetyl-coenzyme A, a key compound in converting organic matters to CO2. In addition, fungi are favorable to enrich methanogenic archaea even at high OLR, improving the activity of acetate kinase and coenzyme F420 for more efficient methanogenic pathway. This work may shed new light on how to achieve higher OLR and methane production in anaerobic digestion of wastewater.  相似文献   
184.
配制模拟番茄酱废水,在高径比为10的SBR反应器中,考察连续曝气条件下好氧颗粒污泥(AGS)的除污性能和微生物特性的变化。建立流体动力学模型,模拟反应器中气〖CD*2〗液〖CD*2〗污泥三相流的流态,以了解其对污泥颗粒化的影响机理。结果表明:污泥完全颗粒化后,对番茄酱废水中COD、NH3-N和PO3-4-P的去除率分别为94.37%、93.55%和9092%;绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)丰度显著提高,假丝酵母菌(Candidatus saccharibacteria)为除磷功能微生物;反应器内的流态结构呈环流和旋涡流,水力剪切力的大小与颗粒粒径呈正相关,颗粒形态与流态分布有关。  相似文献   
185.
In this study,the effects of soluble readily biodegradable COD (sCOD) and particulate slowly biodegradable COD (pCOD) on anammox process were investigated.The results of the longterm experiment indicated that a low sCOD/N ratio of 0.5 could accelerate the anammox and denitrification activity,to reach as high as 84.9%±2.8% TN removal efficiency.Partial denitrification-anammox (PDN/anammox) and denitrification were proposed as the major pathways for nitrogen removal,accounting for 91.3% and 8.7% o...  相似文献   
186.
Biodegradability and Biodegradation of Polyesters   总被引:4,自引:0,他引:4  
A variety of biodegradable plastics have been developed in order to obtain useful materials that do not cause harm to the environment. Among the biodegradable plastics, aliphatic polyesters such as: poly(3-hydroxybutyrate) (PHB), poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS), and poly(l-lactide) (PLA) have become the focus of interest because of their inherent biodegradability. However, before their widespread applications, comprehensive studies on the biodegradability and biodegradation mechanisms of these polyesters are necessary. Thus, this paper describes the degradation mechanisms and the effects of various factors on the degradation of polyesters. The distribution of polymer-degrading microorganisms in the environment, different microorganisms and enzymes involved in the degradation of various polyesters are also discussed.  相似文献   
187.
The fractionation of carbon and chlorine stable isotopes of dichloromethane(CH_2Cl_2,DCM)upon dechlorination by cells of the aerobic methylotroph Methylobacterium extorquens DM4 and by purified DCM dehalogenases of the glutathione S-transferase family was analyzed.Isotope effects for individual steps of the multi-stage DCM degradation process,including transfer across the cell wall from the aqueous medium to the cell cytoplasm,dehalogenase binding,and catalytic reaction,were considered.The observed carbon and chlorine isotope fractionation accompanying DCM consumption by cell supensions and enzymes was mainly determined by the breaking of C\Cl bonds,and not by inflow of DCM into cells.Chlorine isotope effects of DCM dehalogenation were initially masked in high density cultures,presumably due to inverse isotope effects of non-specific DCM oxidation under conditions of oxygen excess.Glutathione cofactor supply remarkably affected the correlation of variations of DCM carbon and chlorine stable isotopes(Δδ~(13)C/Δδ~(37)Cl),increasing corresponding ratio from 7.2–8.6 to 9.6–10.5 under conditions of glutathione deficiency.This suggests that enzymatic reaction of DCM with glutathione thiolate may involve stepwise breaking and making of bonds with the carbon atom of DCM,unlike the uncatalyzed reaction,which is a one-stage process,as shown by quantum-chemical modeling.  相似文献   
188.
Knowledge on methanogenic microbial communities associated with the degradation of polycyclic aromatic hydrocarbons (PAHs) is crucial to developing strategies for PAHs bioremediation. In this study, the linkage between the type of PAHs and microbial community structure was fully investigated through 16S rRNA gene sequencing on four PAH-degrading cultures. Putative degradation products were also detected. Our results indicated that naphthalene (Nap)/2-methylnaphthalene (2-Nap), phenanthrene (Phe) and anthracene (Ant) sculpted different microbial communities. Among them, Nap and 2-Nap selected for similar degrading bacteria (i.e., Alicycliphilus and Thauera) and methanogens (Methanomethylovorans and Methanobacterium). Nap and 2-Nap were probably activated via carboxylation, producing 2-naphthoic acid. In contrast, Phe and Ant shaped different bacterial and archaeal communities, with Arcobacter and Acinetobacter being Phe-degraders and Thiobacillus Ant-degrader. Methanogenic archaea Methanobacterium and Methanomethylovorans predominated Phe-degrading and Ant-degrading culture, respectively. These findings can improve our understanding of natural PAHs attenuation and provide some guidance for PAHs bioremediation in methanogenic environment.  相似文献   
189.
Microbial transformations of toxic monomethylmercury(MMHg) and dissolved gaseous mercury(DGM) at the lower levels of the marine food web are not well understood, especially in oligotrophic and phosphorus-limited seas. To examine the effects of probable phosphorus limitation(~PP-limitation) on relations between mercury(Hg) fractions and microorganisms, we determined the total mercury(THg), total methylated mercury(MeHg), DGM, and microbiological and chemical parameters in the Central Adriatic Sea. Using statistical analysis, we assessed the potential microbial effects on Hg transformations and bioaccumulation. Only in the absence of ~PP-limitation conditions(~(NO–P)P-limitation) is MeHg significantly related to most chemical and microbial parameters, indicating metabolism-dependent Hg transformations.The heterotrophic activity of low nucleic acid bacteria(abundant in oligotrophic regions)seems responsible for most of Hg methylation under ~(NO–P)P-limitation. Under these conditions,DGM is strongly related to microbial fractions and chlorophyll a, indicating biological DGM production, which is probably not metabolically induced, as most of these relations are also observed underPP-limitation. MMHg biomagnification was observed through an increased bioaccumulation factor from microseston to mesozooplankton. Our results indicate that Hgtransformations and uptake might be enhanced under ~(NO–P)P-limitation conditions, emphasizing their impact on the transfer of Hg to higher trophic levels.  相似文献   
190.
The low activity of Anammox bacteria at low temperatures and competition from nitrite oxidation bacteria(NOB) when treating low strength wastewater have been major bottlenecks in implementing Anammox in mainstream wastewater treatment. By intermittent high strength feeding(IHSF) and stepwise temperature reduction, stable operation of a granular Anammox reactor was realized at low temperatures(down to 15°C) for 28 days when treating low strength synthetic wastewater. The nitrogen loading rate reached 1.23–1.34 kgN/m~3/day,and the total nitrogen removal rate reached 0.71–0.98 kgN/m~3/day. The IHSF enriched the Anammox sludge in high strength cycles and compensated for sludge loss in low strength cycles, and the high concentration of ammonium in high strength cycles inhibited NOB. The 16 SrRNA gene sequencing results revealed that Candidatus Kuenenia was predominant in the reactor at low temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号