首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   4篇
  国内免费   116篇
安全科学   1篇
废物处理   10篇
环保管理   25篇
综合类   171篇
基础理论   70篇
污染及防治   78篇
评价与监测   17篇
社会与环境   1篇
  2023年   17篇
  2022年   31篇
  2021年   17篇
  2020年   17篇
  2019年   34篇
  2018年   24篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   5篇
  2009年   13篇
  2008年   26篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
201.
The unique characteristics of anammox bacteria were reviewed. Ecological distribution and nitrogen loss contributions were well documented. Ecological interactions between anammox bacteria and other organisms were discussed. Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based applications. Anammox bacteria are almost ubiquitous in the suboxic zones of almost all types of natural ecosystems and contribute significant to the global total nitrogen loss. In this paper, their ecological distributions and contributions to the nitrogen loss in marine, wetland, terrestrial ecosystems, and even extreme environments were reviewed. The unique metabolic mechanism of anammox bacteria was well described, including the particular cellular structures and genome compositions, which indicate the special evolutionary status of anammox bacteria. Finally, the ecological interactions among anammox bacteria and other organisms were discussed based on substrate availability and spatial organizations. This review attempts to summarize the fundamental understanding of anammox, provide an up-to-date summary of the knowledge of the overall anammox status, and propose future prospects for anammox. Based on novel findings, the metagenome has become a powerful tool for the genomic analysis of communities containing anammox bacteria; the metabolic diversity and biogeochemistry in the global nitrogen budget require more comprehensive studies.  相似文献   
202.
• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD. • Thermophilic AD was more effective in eliminating resistance genes than mesophilic. • ARGs variations in AD were mainly affected by succession of microbial community. • Methane production was significant associated to ARGs reduction. The role of norfloxacin (NOR) and sulfamethoxazole (SMX) in mesophilic and thermophilic anaerobic digestion (AD) of pig manure, with respect to methane production and variations in the microbial community and resistance genes, including antibiotic resistance genes (ARGs), class I integrase (intI1), and heavy metal resistance genes (MRGs), was investigated. The results indicated that NOR exerted little influence on the microbial community, whereas SMX negatively affected the acetoclastic methanogens. The abundance of two sulfonamide resistance genes (sul1 and sul2), three quinolone resistance genes (qnrS, parC, and aac(6’)-Ib-cr), and intI1 decreased by 2‒3 orders of magnitude at the end of thermophilic AD. In contrast, mesophilic AD was generally ineffective in reducing the abundance of resistance genes. According to the results of redundancy analysis, the abundance of ARGs was affected primarily by microbial community dynamics (68.5%), rather than the selective pressure due to antibiotic addition (13.3%). Horizontal gene transfer (HGT) through intI1 contributed to 26.4% of the ARG variation. The archaeal community also influenced the changes in the resistance genes, and ARG reduction was significantly correlated with enhanced methane production. Thermophilic AD presented a higher methane production potential and greater reduction in resistance gene abundance.  相似文献   
203.
• Short-term effect of the pyridine exposure on the SAD process was investigated. • The SAA at 150 mg/L pyridine reduced by 56.7% of the maximum value. • Inhibition kinetics models and inhibitory parameters were indicated. • Collaboration of AnAOB, HDB and PDB promoted the SAD. • Possible metabolic pathways of nitrogen and pyridine were proposed. In-depth knowledge on the role of pyridine as a bottleneck restricting the successful application of anammox-based process treating refractory coking wastewater remains unknown. In this study, the effect of short-term pyridine addition on a simultaneous anammox and denitrification (SAD) system fed with 25–150 mg/L pyridine was explored. The short-term operation showed that the highest total nitrogen (TN) removal efficiency was achieved at 25–50 mg/L of pyridine. As the pyridine addition increased, the contribution of the anammox pathway in nitrogen removal decreased from 99.3% to 79.1%, while the denitrification capability gradually improved. The specific anammox activity (SAA) at 150 mg/L pyridine decreased by 56.7% of the maximum SAA. The modified non-competitive inhibition model indicated that the 50% inhibitory concentration (IC50) of pyridine on anammox was 84.18 mg/L and the substrate inhibition constant (Ki) of pyridine for self-degradation was 135.19 mg/L according to the Haldane model. Moreover, high-throughput sequencing confirmed the abundance of Candidatus Kuenenia as the amount of anammox species decreased, while the amounts of denitrifiers and pyridine degraders significantly increased as the pyridine stress increased. Finally, the possible pathways of nitrogen bioconversion and pyridine biodegradation in the SAD system were elucidated through metagenomic analysis and gas chromatography/mass spectrometry results. The findings of this study enlarge the understanding of the removal mechanisms of complex nitrogenous pyridine-containing wastewater treated by the SAD process.  相似文献   
204.
Microbial compositions showed high differences in two study areas. COD was the key anthropogenic indicator in the coastal wastewater disposal area. Distinctive microbes capable of degrading toxic pollutants were screened. Microbial communities in effluent-receiving areas followed “niche theory”. Microbial community structure is affected by both natural processes and human activities. In coastal area, anthropegenetic activity can usually lead to the discharge of the effluent from wastewater treatment plant (WWTP) to sea, and thus the water quality chronically turns worse and marine ecosystem becomes unhealthy. Microorganisms play key roles in pollutants degradation and ecological restoration; however, there are few studies about how the WWTP effluent disposal influences coastal microbial communities. In this study, sediment samples were collected from two WWTP effluent-receiving areas (abbreviated as JX and SY) in Hangzhou Bay. First, based on the high-throughput sequencing of 16S rRNA gene, microbial community structure was analyzed. Secondly, several statistical analyses were conducted to reveal the microbial community characteristics in response to the effluent disposal. Using PCoA, the significant difference of in microbial community structure was determined between JX and SY; using RDA, water COD and temperature, and sediment available phosphate and ammonia nitrogen were identified as the key environmental factors for the community difference; using LDA effect size analysis, the most distinctive microbes were found and their correlations with environmental factors were investigated; and according to detrended beta-nearest-taxon-index, the sediment microbial communities were found to follow “niche theory”. An interesting and important finding was that in SY that received more and toxic COD, many distinctive microbes were related to the groups that were capable of degrading toxic organic pollutants. This study provides a clear illustration of eco-environmental deterioration under the long-term human pressure from the view of microbial ecology.  相似文献   
205.
Traditional bacterial indicators used in public health to assess water quality and the Biolog system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems.  相似文献   
206.
Effects of Recreational Impacts on Soil Microbial Communities   总被引:51,自引:0,他引:51  
/ The functional diversity of soil microbial communities in heavilyimpacted subalpine campsites and adjacent undisturbed areas was comparedusing the Biolog method of carbon utilization profiles. Principal componentsanalysis of patterns and level of microbial activity indicate that microbialcommunities differentiate in response to disturbance in the top 6 cm of soil,while below 6 cm there were no recognizable differences between disturbed andundisturbed soil communities. Analysis of the factors that differentiate theupper microbial communities between disturbed and undisturbed sites revealedthat the percent of total carbon sources utilized was significantly less inthe disturbed (54%) than in undisturbed areas (95%). Carbonsubstrates important in the discrimination between soil communities includeplant, invertebrate, and microbial derivatives that could not be metabolizedby microbial communities from disturbed sites. Comparisons of totalculturable actinomycetes, bacteria, and fungi reveal no difference in overallnumber of colony forming units (CFU) on disturbed and undisturbed sites, buta marked decrease in actinomycetes on disturbed sites. Biolog andspread-plate data combined indicate a shift in the structure and function ofthe microbial community in campsite soils, which may be a useful indicator ofsoil community disturbance.KEY WORDS: Microbial functional diversity; Anthropogenic disturbance;Recreational impacts; Carbon source profile; Subalpine  相似文献   
207.
The objective of our study was to assess the response of physical (aggregate stability and bulk density) and biological (enzyme activities and microbial biomass) soil quality indicators to the adoption of agroecological management practices, such as the planting of forage species (forage area) and the rotation of local crops (polycrop area), carried out in a representative tropical pasture on an integrated livestock–crop farm. The pasture system was used as control (pasture area). In all three areas, the values of water-soluble C were higher in the rainy season compared to the dry season. Pasture and forage areas had the highest percentage of stable aggregates in the rainy season, while polycrops developed soils with less stable aggregates. Soil bulk density was lower in the pasture and forage areas than in the polycrop area. In the pasture area, the microbial biomass C values, dehydrogenase, urease, protease-BAA, acid phosphatase, and -glucosidase activities were higher than in the forage and polycrop areas, particularly in the dry season. The highest increase in the microbial biomass C in the rainy season, with respect to the dry season, was recorded in the pasture area (about 1.2-fold). In conclusion, the planting of forage species can be considered an effective practice for carrying out sustainable, integrated livestock–crop systems, due to its general maintenance of soil quality, while the adoption of polycrop rotations appears to be less favorable because it decreases soil quality.  相似文献   
208.
陆地石油污染生物降解技术的进展   总被引:1,自引:0,他引:1  
生物治理石油环境污染具有处理费用低、效果好、无二次污染等优点,近年来得到广泛重视和发展应用,并已在治理土壤、岩石及地下水石油污染等方面取得了较好的效果。在此对就地或集中治理过程的近期发展进行了综述,讨论了强化治理过程的途径与展望以及在我国实验室和现场开发的前景。  相似文献   
209.
六价铬还原菌剂载体研究及初步应用实验   总被引:2,自引:1,他引:1  
利用污染土壤中筛选出的六价铬还原土著微生物,筛选不同的载体制成固态菌剂,结果表明:稻壳、麦麸、稻糠配比为5:2:2时具有实用性,将该配比的菌剂施用到六价铬浸出液浓度从25.3~342.1mg/L的3组污染土壤中,120d后六价铬还原率均达到95%以上,且浸出液中六价铬浓度全部符合危险废物鉴别标准,说明该载体制成的还原菌剂可有效应用于铬污染土壤的生物修复工程。  相似文献   
210.
Microbes play an important role in material circulation and pollutant release in urban sediments, and its community structure can provide an important basis for evaluating the pollution load and ecosystem health of an urban river. In this study, bacterial communities in sediments from different locations of Tangxi River in Anhui Province were analyzed and compared, with an objective of evaluating the effects of aquatic environment on spatial characteristics of bacterial communities and the feasibility of using bacterial community composition as an indicator of urban river health. PCR-DGGE was applied to analyze the bacterial communities; fifteen major bands of 16S rDNA genes fragments from DGGE profiles of sediment samples were further eluted from gel, reamplified and sequenced. The sequences of these fragments were compared with the database in GenBank (NCBI). The collected samples were clustered based on UPGM Aanalysis. In addition, relationships between bacterial communities and environmental factors were analyzed by Monte Carlo test and redundancy analysis (RDA). The DGGE profiles indicated that upstream surface sediments had about 30 bands, but the differences in brightness were not significant. Although midstream surface sediments had only 18 bands on average, the brightness of some bands was relatively high, indicating that some dominant species of bacteria existed in these sediments. The amounts of bands in downstream sediments were between those of upstream and midstream, with some bands of high brightness. The NCBI comparison results showed that ten sequences shared 98-100% homology with known sequences, one with 97%, and the other four with uncultured bacteria. Shannon index (H) of bacterial diversity from upstream surface sediments was 3.31 on average, which was significantly (P < 0.05) higher than that of midstream surface sediments, and slightly higher than that of downstream surface sediments. UPGMA results showed both the distribution of bacteria communities and the diversity were strongly related with the sampling locations (Eigenvalue = 0.188, P = 0.134). Monte Carlo test and RDA analysis showed that the ion exchangeable form of nitrogen (IEF-N) was the main factor influencing the spatial characteristics of bacterial communities in the sediments. The aquatic plants had a significant effect on the richness of bacterial communities in the sediments, and the effectiveness of plant species was more notable than that of the vegetation coverage. The above results indicated that bacterial community structure and diversity in the surface sediments can well reflect the degree of urbanization development and effectiveness of ecological restoration in Tangxi River region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号