首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   4篇
  国内免费   116篇
安全科学   1篇
废物处理   10篇
环保管理   25篇
综合类   171篇
基础理论   70篇
污染及防治   78篇
评价与监测   17篇
社会与环境   1篇
  2023年   17篇
  2022年   31篇
  2021年   17篇
  2020年   17篇
  2019年   34篇
  2018年   24篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   5篇
  2009年   13篇
  2008年   26篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
排序方式: 共有373条查询结果,搜索用时 31 毫秒
261.
Effects of sludge age on volatile fatty acids (VFAs) production and Phosphorus (P) release during anaerobic acidification of waste activated sludge (WAS) were investigated. Sequencing batch reactors (SBR) fed with simulating domestic sewage were applied to produce WAS of different sludge ages, and batch tests were used for anaerobic acidification. The maximum dissolved total organic carbon, release of  PO43+?P, and accumulation of acetate (C2), propionate (C3), butyrate (C4), and valerate (C5) decreased by 56.2%, 55.8%, 52.6%, 43.7%, 82.4% and 84.8%, respectively, as the sludge age of WAS increased from 5 to 40 days. Limited degradation of protein played a dominating role in decreasing DTOC and VFAs production. Moreover, the increase in molecular weight of organics and organic nitrogen content in the supernatant after acidification suggested that the refractory protein in WAS increased as sludge age extended. Although the production of C2, C3, C4, and C5 from WAS decreased as the sludge age increased, the proportions of C2 and C3 in VFAs increased, which might be due to the declined production of C5 from protein and the faded genus Dechlorobacter. Keeping sludge age of WAS at a relatively low level (<10 days) is more appropriate for anaerobic acidification of WAS as internal carbon sources and P resource.  相似文献   
262.
To achieve advanced nitrogen removal from actual municipal sewage, a novel multistage anoxic/aerobic process with sludge regeneration zone (R-MAO) was developed. The reactor was used to treat actual domestic sewage and the nitrogen removal capacity of the sludge regeneration zone (R zone) was investigated during the long-term operation. The best performance was obtained at the R zone's Oxidation-Reduction Potential (ORP) of -50±30 mV and hydraulic residence times (HRT) of 1.2 hr. The average effluent COD, TN, NH4+-N and NO3-N of the R-MAO process were 18.0±2.3, 7.5±0.6, 1.0±0.5 and 4.6±0.4 mg/L, respectively, with the corresponding removal efficiency of COD, TN and NH4+-N were 92.9%±1.0%, 84.1%±1.5% and 97.5%±1.1%. Compared to the sole MAO system, the TN removal efficiency of the R-MAO increased by 10.1%. Besides, under the optimal conditions, the contribution of the R zone in the R-MAO that removal COD, TN, NH4+-N and NO3-N were 0.36, 0.15, 0.032 and 0.82 g/day. High-throughput sequencing results showed that uncultured_bacterium_f_Burkholderiaceae (5.20%), OLB8 (1.04%) and Ottowia (1.03%) played an important role in denitrification in the R zone. This study provided effective guidance for the design and operation of the R-MAO process in domestic sewage treatment.  相似文献   
263.
微生物絮凝剂具有安全、高效、不污染环境等特点,产生絮凝剂的微生物种类多、生长快、易于实现产业化,因而,微生物絮凝剂正日益受到人们的重视。系统介绍了微生物絮凝剂的特性、絮凝机理及影响絮凝的因素,并列举和分析了微生物絮凝剂的应用实例及其广阔前景。  相似文献   
264.
DGGE/TGGE方法在土壤微生物群落研究中的应用   总被引:2,自引:0,他引:2  
杜宇峰  叶央芳 《环境科技》2005,18(Z1):128-131
变性梯度凝胶电泳(DGGE)或温度梯度凝胶电泳(TGGE)已成为环境微生物学领城比较微生物群落多样性和检测种群动力学的重要分子手段,本文介绍了DGGE/TGGE方法在土壤微生物群落研究中的应用进展及存在的缺陷,并提出了改进建议.  相似文献   
265.
The ultimate purpose of phytoextraction is not only to remove heavy metals from soil but also to improve soil quality. Here, we evaluated how the joint effect of Streptomyces pactum (strain Act12) and inorganic (Hoagland's solution) and organic (humic acid and peat) nutrients affected the phytoextraction practice of cadmium (Cd) and zinc (Zn) by potherb mustard, and the microbial community composition within rhizosphere was also investigated. The results indicated that the nutrients exerted synergistically with Act12, all increasing the plant biomass and Cd/Zn uptakes. The inoculation of Act12 alone significantly increased dehydrogenase activity of rhizosphere soil (P < 0.05), while urease and alkaline phosphatase activities varied in different dosage of Act12. Combined application of microbial strain with nutrients increased enzymatic activities with the elevated dosage of Act12. 16S ribosomal RNA high-throughput sequencing analysis revealed that Act12 inoculation reduced the diversity of rhizosphere bacteria. The Act12 and nutrients did not change dominant phyla i.e., Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria and Acidobacteria, but their relative abundance differed among the treatments with: Peat > Act12 > Humic acid > Hoagland's solution. Comparatively, Sphingomonas replaced Thiobacillus as dominant genus after Act12 application. The increase in the Sphingomonas and Flavisolibacter abundances under Act12 and nutrients treatments gave rise to growth-promoting effect on plant. Our results revealed the important role for rhizosphere microbiota in mediating soil biochemical traits and plant growth, and our approach charted a path toward the development of Act12 combined with soil nutrients to enhance soil quality and phytoextraction efficiency in Cd/Zn-contaminated soils.  相似文献   
266.
We have studied to what degree Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.) and meadow fescue (Festuca pratensis L.) are able to preserve nitrogen (N) and phosphorous (P) in shoots and roots from one growing season to the next in a northern temperate climate. Field experiments were performed during four consecutive winters in central southeast Norway (60°42′N, 10°51′E), and N and P in plant biomass were measured in the autumn and in the spring. We also measured the contents of total N, total P and organic carbon (C) in seepage water that percolated through the aboveground plant material. Uptake of N and P in Italian ryegrass and white clover was substantially larger than in meadow fescue. The winter losses varied greatly from year to year, depending on the winter climate. On the average for all three of the plant species, the winter losses of N from aboveground biomass were 6, 35, 68 and 10% in the four experimental years, respectively. The corresponding P losses were 11, 36, 60 and 22%. On the average for all plant species and experimental years, 43 (±12)% (S.E., n = 12) of the N, 34 (±9)% of the P and 4 (±1)% of the C that was lost from the aboveground plant biomass during the winter, was recovered in seepage water, basically as a nutrient pulse in melt water in early spring. The very low C recovery rate in seepage water suggested a considerable microbial growth on lost plant C. Assuming that all un-recovered plant C was consumed by microorganisms not included in measurements of the seepage water, modelling showed that microbial immobilisation theoretically might explain the unexpectedly low recovery rates of N and P. The study was not designed to investigate the possible effects of psychrophilic microbes on N and P cycling. Therefore, it is inconclusive and underlines the need for more knowledge on this matter.  相似文献   
267.
Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone. In this study, within the relative pressure range of 0–0.6 MPa, the ambient temperature with the highest sulfate reduction rate of 50°C was selected to explore the difference in sulfate reduction behavior in a pressure-bearing leachate saturated zone. The results showed that the sulfate reduction rate might further increase with an increase in pressure; however, owing to the effect of pressure increase, the generated hydrogen sulfide (H2S) could not be released on time, thereby decreasing its highest concentration by approximately 85%, and the duration extended to about two times that of the atmospheric pressure. Microbial community structure and functional gene abundance analyses showed that the community distribution of sulfate-reducing bacteria was significantly affected by pressure conditions, and there was a negative correlation between disulfide reductase B (dsrB) gene abundance and H2S release rate. Other sulfate reduction processes that do not require disulfide reductase A (dsrA) and dsrB genes may be the key pathways affecting the sulfate reduction rate in the pressure-bearing leachate saturated zone. This study improves the understanding of sulfate reduction in landfills as well as provides a theoretical basis for the operation and management of landfills.  相似文献   
268.
Lee BD  Hosomi M 《Chemosphere》2001,43(8):1127-1132
In order to mitigate the strong microbial resistance of benz(a)anthracene [B(a)A] in soil, a hybrid treatment of Fenton oxidation followed microbial culture was carried out. Based on optimal Fenton oxidation, i.e., 1.0 ml of ethanol, 0.2 ml of 0.5 M Fe2+, and 0.3 ml of 30% H2O2 per 1 g of 500 mg B(a)A/kg soil, about 43% of B(a)A-7,12-dione was generated during oxidation of 97% B(a)A. When the comparative biodegradability between B(a)A-contaminated soil and B(a)A-contaminated soil after Fenton oxidation was examined, it was found that 98% of B(a)A-7,12-dione degraded after 63 d in comparison with only 12% of B(a)A over the same period; results demonstrating that Fenton oxidation enhances biodegradability of B(a)A through B(a)A-7,12-dione.  相似文献   
269.
The distillation of acidified coal tars for up to 50 years has given rise to a phenol plume approximately 500 m long, 50 m deep and containing up to 15 g l(-1) dissolved organic carbon (DOC) in the Triassic Sandstones aquifer. A conceptual biogeochemical model based on chemical and microbiological analysis of groundwater samples has been developed as a preliminary to more detailed studies of the controls on natural attenuation. While the development of redox zones and the production of methane and carbon dioxide provide evidence of natural attenuation, it appears that degradation is slow. The existence of sulphate in the plume indicates that this electron acceptor has not been depleted and that consequently methanogenesis is probably limited. Based on a simple estimate of sulphate input concentration, a half-life of about 15 years has been estimated for sulphate reduction. Geochemical modelling predicts that increased alkalinity within the plume has not led to carbonate precipitation, and thus within the limits of accuracy of the measurement, alkalinity may reflect the degree of biodegradation. This implies a loss of around 18% of the DOC over a 30-year period. Despite limited degradation, microbial studies show that there are diverse microbial communities in the aquifer with the potential for both anaerobic and aerobic biodegradation. Microbial activity was found to be greatest at the leading edge of the plume where DOC concentrations are 60 mg l(-1) or less, but activity could still be observed in more contaminated samples even though cells could not be cultured. The study suggests that degradation may be limited by the high phenol concentrations within the core of the plume, but that once diluted by dispersion, natural attenuation may proceed. More detailed studies to confirm these initial findings are identified and form the basis of associated papers.  相似文献   
270.
城市污水厂混合污泥的生态稳定处理   总被引:13,自引:3,他引:13  
城市污水厂初沉池和二沉池混合污泥利用由蚯蚓和微生物共同组成的人工生态系统进行稳定处理。蚯蚓生态床可集污泥浓缩、调理、脱水、稳定、处置和综合利用等多种功能于一身:(1)蚯蚓和微生物将污泥作为生长营养源,对其进行分解和吸收;(2)蚯蚓生理代谢产生的蚓粪是高效农肥和土壤改良剂;(3)在生态床中增殖的蚯蚓具有重要的饲料和药用价值。污泥物质经蚯蚓污泥稳定床处理后,可全部被生态系统吸收利用和转化,具有流程简单、管理方便、无二次污染、造价和运行费用低廉、副产物具有经济利用价值等特点,为解决污泥的最终处置问题提供了生态利用的新途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号