首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   4篇
  国内免费   116篇
安全科学   1篇
废物处理   10篇
环保管理   25篇
综合类   171篇
基础理论   70篇
污染及防治   78篇
评价与监测   17篇
社会与环境   1篇
  2023年   17篇
  2022年   31篇
  2021年   17篇
  2020年   17篇
  2019年   34篇
  2018年   24篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   5篇
  2009年   13篇
  2008年   26篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
排序方式: 共有373条查询结果,搜索用时 343 毫秒
261.
The recycling reverse osmosis(RO) membrane concentrate of some high-ammonia nitrogen(NH4+-N) organic wastewater to the biological unit could cause potassium ion(K+) accumulation, thereby affecting the removal of NH4+-N by activated sludge. Thus, the effects of high K+ stress on activated sludge nitrification performance was studied. The results showed that the high K+ stress promoted the floc sludge to produce more extr...  相似文献   
262.
The objective of this study was to investigate the soil nitrogen components of four native artificial plantations at the western edge of the Sichuan Basin. Soil samples from two layers (0-20 cm and 20-40 cm) were collected from 4 plantations (Cryptomeria fortunei, Michelia wilsonii, Phoebe zhennan, and Quercus acutissima) during March, June, September, and December 2015 at the western edge of Sichuan Basin, to perform a comparative analysis on seasonal dynamics. Soil ammonium, nitrate, microbial biomass nitrogen, and environmental factors were synchronously monitored. The results showed that soil inorganic nitrogen was mainly the result of nitrate. The components of labile soil nitrogen showed significant seasonal dynamics. Soil ammonium during the growing season (June and September) was higher than that during the non-growing season (March and December), but soil nitrate, microbial biomass nitrogen, and inorganic nitrogen showed the opposite pattern. Labile nitrogen components in the 0-20 cm layer were generally higher than those in the 20-40 cm layer. Labile soil nitrogen was significantly affected by forest type, which was dependent on season and soil layer. In general, there were significant correlations between the soil nitrogen pools and labile soil nitrogen and the environmental factors, including soil temperature, water content, and monthly rainfall. In conclusion, the variation of labile soil nitrogen was influenced more by season than forest type or soil layer. Compared to the biological effects of tree species, the environmental factors had a stronger effect on labile soil nitrogen. © 2018 Science Press. All rights reserved.  相似文献   
263.
A single chamber microbial fuel cell (MFC) with three-dimensional electrodes packed bed carbon felts was developed to treat domestic wastewater while simultaneously generating electricity. The influence of batch and continuous operation mode on treatment effectiveness and electricity production of the MFC was investigated to provide a reference for the application of the MFC. The MFC with a total working volume of 1 440 mL was operated in the fed-batch mode for 5 d repeatedly three times, and then shifted to the continuous mode. During the testing of the continuous mode, wastewater was continuously pumped into the anode compartment at a flow rate of approximately 0.2 mL/min, resulting in a hydraulic retention time of 5 d. During the batch test, the MFC obtained 91.1% chemical oxygen demand (COD) and 98.2% NH4 +-N removal, which accorded with the first criteria specified in the discharge standard of pollutants for municipal wastewater treatment plants in China (GB18918-2002). A maximum power density of 27.88 mW/m3 was achieved at a 51 Ω external resistor. During the continuous test, the COD removal efficiencies ranged from 83.2% to 97.4%. The concentration of NH4 +-N gradually decreased within 5 d and was then maintained below 9.45 mg/L, thus an enhanced removal performance of NH4 +-N was acquired. However, a low removal efficiency of total nitrogen was observed owing to the accumulation of NO3 --N in the effluent since day 11. Additionally, the MFC continually generated electricity with a maximum power density of 582.5 mW/m3 and average output voltage of 0.087 7 V during the stable period in the continuous operation mode. Moreover, 16S rRNA gene high-throughput sequencing showed that Thauera sp., Saprospiraceae-UN sp., and OPB56-UN sp. were identified as dominant populations. The results suggested that the organic matter associated with power generation was constantly utilized by the microorganisms in the reactor, which caused an excellent electricity generation performance during the continuous test. Therefore, the continuous operation mode could improve the low output voltage phenomenon in the MFC. Thauera sp., as a type of nitrate-reducing bacteria, was enriched in the autotrophic denitrifying microbial communities; therefore, bio-enrichment with denitrifying bacteria such as Thauera sp. could decrease the concentration of NO3 --N in the effluent during the continuous operation mode, which is expected to be an innovation for improvement of wastewater treatment. © 2018 Science Press. All rights reserved.  相似文献   
264.
Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3·d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.
  相似文献   
265.
The inhibition ratio sharply increased with the increasing COD. The absorbance of UV-vis at 420 nm showed a linear correlation with the SMA. The molecular structure of EPS has changed when COD was 9585 mg/L. Illumina Miseq sequencing was employed to reveal the microbial composition. The synthesis of 2-butenal, which is a vital raw material for the production of sorbic acid as a food preservative, generates some toxic by-products, so it is urgent to seek better detoxification strategies for the treatment of 2-butenal manufacture wastewater. In this study, batch experiments were carried out to investigate the inhibition effect of wastewater on the methanogenic activity. To understand the wastewater toxicity to anaerobic granular sludge, variations of the specific methanogenic activity (SMA) and extracellular polymeric substance (EPS) constituents at various wastewater CODs were investigated. Ultraviolet-visible (UV-vis) spectra and Fourier transform infrared (FT-IR) spectra were employed to analyze the structure of the EPS. The results showed that the inhibitory ratio of 2-butenal manufacture wastewater was less than 8.4% on the anaerobic granular sludge when the CODs were less than 959 mg/L. However, the inhibitory ratio increased from 36.4% to 93.6% when CODs increased from 2396 mg/L to 9585 mg/L, with the SMA decreasing from 39.1 mL CH4/(gVSS·d) to 3.2 mL CH4/(gVSS·d). The diversity of the microbial community under various CODs was researched by Illumina 16S rRNA Miseq sequencing and the results demonstrated that ProteiniphilumPetrimonas and Syntrophobacter were the dominant bacteria genera in all sample. Regarding archaea, Methanobacterium was the most dominated archaea genera, followed by the Methanosaeta group in all samples. Moreover, the bacterial communities had changed obviously with increasing CODs, which indicated high CODs played a negative impact on the richness and diversity of bacterial community in the sludge samples.  相似文献   
266.
Urban black blooms that are primarily caused by organic carbon are deleterious environmental problems. However, detailed studies on the microbial characteristics that form urban black blooms are lacking. In this study, we observed the composition, diversity, and function of bacterial community in the overlying water and sediments during the occurrence and remediation of urban black blooms using high-throughput 16S rRNA gene amplicon sequencing analysis. First, we found that pivotal consortia in ...  相似文献   
267.
Solution-grown single crystals of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] were hydrolyzed by polyhydroxybutyrate (PHB) depolymerase from Ralstonia pickettii T1. Enzymatic degradation proceeded from the edges of lamellar crystals, yielding serrated contour and small crystal fragments. Gel permeation chromatography analysis revealed that the molecular weights of the crystals decreased during enzymatic degradation, suggesting that the enzymatic hydrolysis of chain-folding regions at the crystal surfaces occurred in addition to the enzymatic degradation at crystal laterals or edges. After P(3HB-co-4HB) single crystals were aminolysed in 20% aqueous methylamine solution to remove the folded-chain regions and enzymatic degradation by lipase from Rhizopus oryzae to remove 4HB components at crystal surfaces of single crystal aminolyzed, it was found that a small amount (up to ca. 2 mol%) of 4HB component can be incorporated into the P(3HB) mother crystal lattice irrespective of the 4HB content.  相似文献   
268.
Microbial fuel cells (MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However, large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.  相似文献   
269.
Biofilms have important effects on nutrient cycling in aquatic ecosystems.However,publications about the community structure and functions under laboratory conditions are rare.This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator.The results showed that the biomass(Chl a)and photosynthesis of algae were inhibited under P-limitation conditions,while the phosphatase activity and P assimilation rate were promoted.The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability.Cyanobacteria were more competitive than other algae in biofilms,particularly when cultured under low P levels.A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01,0.1 and 0.6 mg/L.However,the total N content,dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability.This may be attributed to the low respiration rate,high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low.The bacterial community structure differed over time,while there was little difference between the four treatments,which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability.Altogether,these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water.  相似文献   
270.
In the present study, the cellulose binding proteins(CBPs) secreted by a putative cellulolytic microbial consortium were isolated and purified by affinity digestion. The purified CBPs were subsequently separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis(SDS-PAGE). Using mass spectrometric analyses, eight CBPs were identified and annotated to be similar to known proteins secreted by Clostridium clariflavum DSM 19732 and Paenibacillus sp. W-61. In addition, in combination with dilution-to-extinction approach and zymogram analysis technique, CBPs 6(97 k Da) and 12(52 k Da) were confirmed to be the key functional proteins that influence cellulolytic activities. Moreover, structural domain analyses and enzymatic activity detection indicated that CBPs 6 and 12 contained glycoside hydrolase families(GH) 9 and 48 catalytic modules, which both revealed endoglucandase and xylanase activities. It was suggested that the coexistence of GH9 and GH48 catalytic domains present in these two proteins could synergistically promote the efficient degradation of cellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号