首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   4篇
  国内免费   116篇
安全科学   1篇
废物处理   10篇
环保管理   25篇
综合类   171篇
基础理论   70篇
污染及防治   78篇
评价与监测   17篇
社会与环境   1篇
  2023年   17篇
  2022年   31篇
  2021年   17篇
  2020年   17篇
  2019年   34篇
  2018年   24篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   5篇
  2009年   13篇
  2008年   26篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
301.
The effects of different chemical oxygen demand(COD) concentrations on the anammox granular sludge with Bamboo Charcoal(BC) addition were evaluated in UASB reactor. The results showed that the average total nitrogen(TN) removal efficiency was reduced from85.9% to 81.4% when COD concentration was increased from 50 to 150 mg/L. However, the TN removal efficiency of BC addition reactors was dramatically 3.1%–6.4% higher than that without BC under different COD concentrations. The average diameter o...  相似文献   
302.
• Nano Fe2O3 and N-doped graphene was prepared via a one-step ball milling method. • The maximum power density of Fe-N-G in MFC was 390% of that of pristine graphite. • Active sites like nano Fe2O3, pyridinic N and Fe-N groups were formed in Fe-N-G. • The improvement of Fe-N-G was due to full exposure of active sites on graphene. Developing high activity, low-cost and long durability catalysts for oxygen reduction reaction is of great significance for the practical application of microbial fuel cells. The full exposure of active sites in catalysts can enhance catalytic activity dramatically. Here, novel Fe-N-doped graphene is successfully synthesized via a one-step in situ ball milling method. Pristine graphite, ball milling graphene, N-doped graphene and Fe-N-doped graphene are applied in air cathodes, and enhanced performance is observed in microbial fuel cells with graphene-based catalysts. Particularly, Fe-N-doped graphene achieves the highest oxygen reduction reaction activity, with a maximum power density of 1380±20 mW/m2 in microbial fuel cells and a current density of 23.8 A/m2 at –0.16 V in electrochemical tests, which are comparable to commercial Pt and 390% and 640% of those of pristine graphite. An investigation of the material characteristics reveals that the superior performance of Fe-N-doped graphene results from the full exposure of Fe2O3 nanoparticles, pyrrolic N, pyridinic N and excellent Fe-N-G active sites on the graphene matrix. This work not only suggests the strategy of maximally exposing active sites to optimize the potential of catalysts but also provides promising catalysts for the use of microbial fuel cells in sustainable energy generation.  相似文献   
303.
Abstract

Present analyses of random amplified polymorphic DNA (RAPD) and Biolog GN substrate utilization pattern are combined to further study the diversity of microbial communities in four soils affected by agricultural chemicals. The results showed that the four soil microbial communities were apparently distinguishable in the diversity at RAPD level in terms of the richness and modified richness in the summer, which supports our previous report using the same soils in winter. A significant difference for the average well color development (AWCD) at 72 h incubation was found among the soils in winter using Biolog GN substrate utilization pattern, but this difference was not found among the soils in summer. However, Shannon-Weaver indices for microbial communities in the summer soils polluted by agricultural chemicals were significantly higher than those in winter at metabolic level; in contrast, no significant difference existed between the two seasons for microbial communities in the soil without chemical pollution. Present results suggest that the combined approach using RAPD and substrate utilization pattern could be used to effectively quantify microbial community diversity and its changes among the seasons in the soils affected by agricultural chemicals, simultaneously at molecular and physiological levels.  相似文献   
304.

Compost was prepared from wheat straw enriched with Rajasthan rock phosphate and Aspergillus awamori. The resulting phospho-compost along with phosphorus enriched FYM, mineral fertilizer (rock phosphate) and super phosphate were evaluated for their individual contribution in improving organic matter status, P availability, and enzymatic activities of soil under wheat crop grown in a micro plot. The results showed that total organic carbon, nitrogen, microbial biomass, and humus content (an index of organic matter status of soil) of soil was highest when farmyard manure (FYM) after its enrichment with 12.5% rock phosphate was applied. Microbial enriched phospho-compost was the product yielding highest soil available phosphorus, phosphorus uptake, urease, and cellulase activities. However, FYM amended with 25% rock phosphate resulted in the greatest enhancement of β-glucosidase. Measured parameters indicated a sure improvement of chemical and biological activities of soil after the application of phosphorus enriched organic amendments compared to the commercial fertilizer commonly used by the Indian farmers.  相似文献   
305.
This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG)5 primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG)5-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish.  相似文献   
306.
Effects of metal contamination on soil biota activity were investigated at 43 sites in 5 different habitats (defined by substratum and vegetation type) in a post-mining area. Sites were characterised in terms of soil pH and texture, nutrient status, total and exchangeable metal concentrations, as well as plant species richness and cover, abundances of enchytraeids, nematodes and tardigrades, and microbial respiration and biomass. The concentrations of total trace metals were highest in soils developed on mining waste (metal-rich dolomite), but these habitats were more attractive than sandy sites for plants and soil biota because of their higher content of organic matter, clay and nutrients. Soil mesofauna and microbes were strongly dependent on natural habitat properties. Pollution (exchangeable Zn and Cd) negatively affected only enchytraeid density; due to a positive relationship between enchytraeids and microbes it indirectly reduced microbial activity.  相似文献   
307.
To highlight the effects of a variety of chlorophenols (CP) in relation to the response of an indigenous bacterial community, an agricultural Mediterranean calcareous soil has been studied in microcosms incubated under controlled laboratory conditions. Soil samples were artificially polluted with 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP), at concentrations ranging from 0.1 up to 5000 mg kg−1. Both activity and composition of the microbial community were assessed during several weeks, respectively, by respirometric methods and PCR-DGGE analysis of extracted DNA and RNA. Significant decreases in soil respirometric values and changes in the bacterial community composition were observed at concentrations above 1000 mg kg−1 MCP and TCP, and above 100 mg kg−1 PCP. However, the persistence of several active bacterial populations in soil microcosms contaminated with high concentration of CP, as indicated by DGGE fingerprints, suggested the capacity of these native bacteria to survive in the presence of the pollutants, even without a previous adaptation or contact with them.The isolation of potential CP degraders was attempted by culture plating from microcosms incubated with high CP concentrations. Twenty-three different isolates were screened for their resistance to TCP and PCP. The most resistant isolates were identified as Kocuria palustris, Lysobacter gummosus, Bacillus sp. and Pseudomonas putida, according to 16S rRNA gene homology. In addition, these four isolates also showed the capacity to reduce the concentration of TCP and PCP from 15% to 30% after 5 d of incubation in laboratory assays (initial pollutant concentration of 50 mg L−1). Isolate ITP29, which could be a novel species of Bacillus, has been revealed as the first known member in this bacterial group with potential for CP bioremediation applications, usually wide-spread in the soil natural communities, which has not been reported to date as a CP degrader.  相似文献   
308.
We characterized the ability of the cell free extract from polychlorinated dibenzo-p-dioxins degrading bacterium Geobacillus sp. UZO 3 to reduce even highly chlorinated dibenzo-p-dioxins such as octachlorodibenzo-p-dioxins in incineration fly ash. The degradation of 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) as a model dioxin catalyzed by the cell free extract from this strain implicates that the ether bonds of 2,7-DCDD molecule undergo reductive cleavage, since 4′,5-dichloro-2-hydroxydiphenyl ether and 4-chlorophenol were detected as intermediate products of 2,7-DCDD degradation.  相似文献   
309.
Variation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg−1), bacterial abundance (in order of 9 × 109 cell g−1 dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments. In fact, the relatively unpolluted deepwater sites and the coastal polluted site show large synchronous increases in bacterial densities linked to the anoxic conditions in the 1970s (lake eutrophication caused by external nutrient input) that subsequently increased the nutrient loading fluxes. These results show that the microbial activities response to natural or human-induced changing limnological conditions (e.g., nutrient supply, oxygen availability, redox conditions) constitutes a threat to the security of water resources, which in turn poses concerns for the world’s freshwater resources in the context of global warming and the degradation of water quality (oxygen depletion in the bottom water due to reduced deep waters mixing). Moreover, the accumulation of inorganic pollutants such as high mercury (methyl-mercury) concentration may represent a significant source of toxicity for sediment dwelling organisms.  相似文献   
310.
Pardo T  Clemente R  Bernal MP 《Chemosphere》2011,84(5):642-650
The use of organic wastes as amendments in heavy metal-polluted soils is an ecological integrated option for their recycling. The potential use of alperujo (solid olive-mill waste) compost and pig slurry in phytoremediation strategies has been studied, evaluating their short-term effects on soil health. An aerobic incubation experiment was carried out using an acid mine spoil based soil and a low OM soil from the mining area of La Unión (Murcia, Spain). Arsenic and heavy metal solubility in amended and non-amended soils, and microbial parameters were evaluated and related to a phytotoxicity test. The organic amendments provoked an enlargement of the microbial community (compost increased biomass-C from non detected values to 35 μg g−1 in the mine spoil soil, and doubled control values in the low OM soil) and an intensification of its activity (including a twofold increase in nitrification), and significantly enhanced seed germination (increased cress germination by 25% in the mine spoil soil). Organic amendments increased Zn and Pb EDTA-extractable concentrations, and raised As solubility due to the influence of factors such as pH changes, phosphate concentration, and the nature of the organic matter of the amendments. Compost, thanks to the greater persistence of its organic matter in soil, could be recommended for its use in (phyto)stabilisation strategies. However, pig slurry boosted inorganic N content and did not significantly enhance As extractability in soil, so its use could be specifically recommended in As polluted soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号