首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   55篇
  国内免费   77篇
安全科学   123篇
废物处理   29篇
环保管理   40篇
综合类   266篇
基础理论   62篇
污染及防治   79篇
评价与监测   69篇
社会与环境   14篇
灾害及防治   3篇
  2023年   9篇
  2022年   9篇
  2021年   13篇
  2020年   27篇
  2019年   15篇
  2018年   13篇
  2017年   17篇
  2016年   18篇
  2015年   25篇
  2014年   23篇
  2013年   17篇
  2012年   28篇
  2011年   39篇
  2010年   19篇
  2009年   33篇
  2008年   29篇
  2007年   36篇
  2006年   29篇
  2005年   30篇
  2004年   22篇
  2003年   35篇
  2002年   31篇
  2001年   20篇
  2000年   24篇
  1999年   18篇
  1998年   23篇
  1997年   10篇
  1996年   9篇
  1995年   14篇
  1994年   12篇
  1993年   8篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1984年   1篇
  1981年   1篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有685条查询结果,搜索用时 46 毫秒
61.
Tracer gas was released upwind of a two-compartment complex shaped building under unstable atmospheric conditions. The mean wind direction was normal to or at 45° to the long face of the building. The general patterns of concentration distribution on the building external walls and inside the building were analysed and the influence of natural and mechanical ventilation on indoor concentration distributions was discussed. Mean concentration levels, as well as the concentration fluctuation intensity, were higher on the windward walls of the building, although concentration levels varied along each wall. Concentration fluctuations measured inside the building were lower than those measured outside. Inside the two compartments of the building, the time series of concentrations had a similar general behaviour; however, gas concentrations took approximately 1.5 times longer to reach the mean maximum concentration value at the downwind compartment 02 while they also decreased more rapidly in the upwind compartment 01 after the source was turned off. The highest indoor concentration and concentration fluctuation values were observed at the detectors located close to the windward walls, especially when the building windows were open. Experiments with and without natural ventilation suggested that infiltration and exfiltration of contaminants is much faster when the building windows are open, resulting to higher indoor concentration levels. Furthermore, mechanical ventilation tends to homogenize concentrations and suppress concentration fluctuations, leading to lower maximum concentration values.  相似文献   
62.
液化天然气(LNG)瞬时泄漏扩散的模拟研究   总被引:1,自引:0,他引:1  
对液化天然气泄漏扩散过程进行了分析,考虑其泄漏后发生闪蒸时的液滴夹带以及混合空气量,将闪蒸完的状态作为箱模型的初始状态,考虑空气的湿度影响建立了重气扩散过程的箱模型,并应用实例进行了验证,得出了泄漏后有火灾爆炸危险性的区域以及距离泄漏源的位置,为应急救援预案的制定提供参考,模拟结果显示了重气扩散过程中的重力沉降,空气夹带等一般特征,同时云团初始闪蒸时的液滴夹带对云团的扩散行为具有一定的影响,不能忽略.最后提出了今后的研究方向.  相似文献   
63.
64.
Using water curtain system to forced mitigate ammonia vapor cloud has been proven to be an effective measure. Currently, no engineering guidelines for designing an effective water curtain system are available, due to lack of understanding of complex interactions between ammonia vapor cloud and water droplets, especially the understanding of ammonia absorption into water droplets. This paper presents numerical calculations to reproduce the continuous ammonia release dispersion with and without the mitigating influence of a downwind water curtain using computational fluid dynamic (CFD) software ANSYS Fluent 14.0. The turbulence models kɛ and RNG were used to simulate the ammonia cloud dispersion without downwind water curtain. The simulated results were compared with literature using the statistical performance indicators. The RNG model represents better agreement with the experimental data and the kɛ model generates a slightly lesser result. The RNG model coupled with Lagrangian discrete phase model (DPM) was used to simulate the dilution effectiveness of the water curtain system. The ammonia absorption was taken into account by means of user-defined functions (UDF). The simulated effectiveness of water curtains has good agreements with the experimental results. The effectiveness of water mitigation system with and without the ammonia absorption was compared. The results display that the effectiveness mainly depends on the strong air entrainment enhanced by water droplets movement and the ammonia absorption also enhances the effectiveness of water curtain mitigation system. The study indicates that the CFD code can be satisfactorily applied in design criteria for an effective mitigation system.  相似文献   
65.
Regasification plants have become an emerging risk because their numbers are increasing and concern from the general population towards these systems has grown. Consequently, there is increased interest in investigating the effect of mitigation measures to limit the impact of large accidents on the population living close to the plant. Among the various possible mitigation measures, physical barriers present several advantages; however, it is known that the necessary barrier height can became impracticably large to be effective in mitigating the consequences of a large LNG release. Therefore, computational fluid dynamics models were used in this work to analyze the performance of mitigation barriers with different shapes to investigate the possibility of increasing mitigation barrier efficiency by simply changing the main geometrical characteristics of the barrier such as roughness, battlements, or even holes.  相似文献   
66.
Literature data on numerical values obtained for the parameters of the two most popular models for simulating the migration of radionuclides in undisturbed soils have been compiled and evaluated statistically. Due to restrictions on the applicability of compartmental models, the convection–dispersion equation and its parameter values should be preferred. For radiocaesium, recommended values are derived for its effective convection velocity and dispersion coefficient. Data deficiencies still exist for radionuclides other than caesium and for soils of non-temperate environments.  相似文献   
67.
Model fitting for individual-based effects in forests has some problems. Because samples measuring the separate influence of each individual are rarely available, the measured value in the sample represents the influence of all surrounding individual trees. Therefore, it is helpful to build inverse models that use the spatial pattern of the variable as well as that of the source trees. For example, since seed dispersal is influenced by wind effects, a model is discussed describing anisotropic effects to ensure an unbiased estimate of the total fruit number. Further, we present a model describing the absorption of radiation by trees. In this case a multiplicative combination of individual effects yields the total effect. Our approach uses logarithmic transformations of the original data to model multiplicative combinations as sum of transformed single effects. For fitting model parameters we propose an approach based on Bayesian statistics, to ensure ecologically interpretable parameters.  相似文献   
68.
A two-dimensional numerical model for evaluating the wind flow and pollutant dispersion within a street canyon was first developed using the FLUENT code, which was then validated against a wind tunnel experiment. Then, the effects of the upstream building width and upwind building arrangement on the airflow and pollutant dispersion inside an isolated street canyon were investigated numerically. The numerical results revealed that: (1) the in-canyon vortex center shifts downwards as the upstream building width increases; (2) the recirculation zone covers the entire upstream building roof for the cases when W/H = 0.5, 1.0, 1.5, and 2.0 (W is the upstream building width and H is the building height), whereas the flow reattaches the upstream building roof for the cases when W/H = 2.5 and 3.0; (3) when the upstream building width is shorter than the critical width WC (= 2H), an increase in the upstream building width leads to an increase in the pollution level on the leeward wall of the canyon and a decrease in the roof-level concentrations at the upstream building; (4) when the upstream building width is longer than the critical width, the roof-level concentrations at the upstream building are negligibly small and the pollution level on the leeward wall of the canyon is almost unaffected by a further increase in the upstream building width; (5) when the buildings are placed upwind of the canyon, the flow attaches the upstream building roof and, therefore, almost none of the pollutants are distributed on the upstream building roof; and (6) the pollution levels inside the canyon and on the downstream building roof increase significantly with the number of upwind buildings.  相似文献   
69.
ABSTRACT: The effect of unsteadiness of dam releases on velocity and longitudinal dispersion of flow was evaluated by injecting a fluorescent dye into the Colorado River below Glen Canyon Dam and sampling for dye concentration at selected sites downstream. Measurements of a 26-kilometer reach of Glen Canyon, just below Glen Canyon Dam, were made at nearly steady dam releases of 139, 425, and 651 cubic meters per second. Measurements of a 380-kilometer reach of Grand Canyon were made at steady releases of 425 cubic meters per second and at unsteady releases with a daily mean of about 425 cubic meters per second. In Glen Canyon, average flow velocity through the study reach increased directly with discharge, but dispersion was greatest at the lowest of the three flows measured. In Grand Canyon, average flow velocity varied slightly from subreach to subreach at both steady and unsteady flow but was not significantly different at steady and unsteady flow over the entire study reach. Also, longitudinal dispersion was not significantly different during steady and unsteady flow. Long tails on the time-concentration curves at a site, characteristic of most rivers but not predicted by the one-dimensional theory, were not found in this study. Absence of tails on the curves shows that, at the measured flows, the eddies that are characteristic of the Grand Canyon reach do not trap water for a significant length of time. Data from the measurements were used to calibrate a one-dimensional flow model and a solute-transport model. The combined set of calibrated flow and solute-transport models was then used to predict velocity and dispersion at potential dam-release patterns.  相似文献   
70.
The physical processes governing flow and pollutantdispersion at the neighbourhood scale, a spatial scaleintermediate between the street scale and the city scale, is notwell understood. Furthermore, it is not clear whether a traditional approach using averaged characteristics such as theaerodynamic roughness length is sufficient to predict the concentration field at this scale. To investigate pollutant dispersion in a real urban area, three field experiments were designed within the UK-URGENT programme sponsored by NERC. Theexperiments were performed in the City of Birmingham using a finite duration release of inert, non-toxic and non-depositingtracers, vis. perfluoromethylcyclohexane (PMCH) and perfluoromethylcyclopentane (PMCP). Measurements were taken using air bag samplers placedin an arc at 3.5 km (first experiment) and 1 km (second andthird experiments) from the source; some trap samplers wereplaced outside the main arc in the outskirts of the city. Measurements were analysed in the laboratory using anovel gas-chromatography technique. Data so obtained werecompared with predictions from a simple steady-state modeland a time-dependent model. The concentration-time serieswere very asymmetrical with a sharp rise, a plateau followedby a relatively slow decrease and finally a long-livedplateau above (or possibly very slow decrease to) thebackground level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号