首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2422篇
  免费   77篇
  国内免费   432篇
安全科学   57篇
废物处理   30篇
环保管理   361篇
综合类   956篇
基础理论   420篇
污染及防治   661篇
评价与监测   323篇
社会与环境   104篇
灾害及防治   19篇
  2024年   8篇
  2023年   31篇
  2022年   36篇
  2021年   53篇
  2020年   71篇
  2019年   60篇
  2018年   66篇
  2017年   63篇
  2016年   90篇
  2015年   92篇
  2014年   96篇
  2013年   203篇
  2012年   140篇
  2011年   263篇
  2010年   159篇
  2009年   237篇
  2008年   215篇
  2007年   194篇
  2006年   131篇
  2005年   86篇
  2004年   79篇
  2003年   81篇
  2002年   64篇
  2001年   48篇
  2000年   61篇
  1999年   38篇
  1998年   29篇
  1997年   32篇
  1996年   31篇
  1995年   26篇
  1994年   25篇
  1993年   36篇
  1992年   23篇
  1991年   5篇
  1990年   10篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   6篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2931条查询结果,搜索用时 15 毫秒
91.
In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10−7 to 10−4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs.  相似文献   
92.
93.
The understanding and evaluation of the possible interactions of various naturally occurring radionuclides in the world's third largest man-made dam, Nagarjuna Sagar located in Andhra Pradesh, India and built on river Krishna assumed significance with the finding of uranium deposits in locations near the dam. For the present work, surface soil samples from the mineralized area of Lambapur, Mallapuram, Peddagattu and sediment core samples from the Nagarjuna Sagar dam were analyzed for naturally occurring radionuclides namely uranium and thorium using gamma spectrometric technique. Also toxic elements lead and chromium were analysed by the Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) technique. Surface soil samples show a variation from 25 to 291 Bq/kg (2.02–23.5 mg/kg) for 238U and 32–311 Bq/kg (7.9–76.9 mg/kg) for 232Th. U/Th concentration ratio in surface soil samples ranged from 0.19 to 0.31 and was found comparable with the nation wise average of 0.26. The study of sediment core samples reflected higher U/Th concentration ratio of 0.30–0.33 in the bottom section of the core as compared to 0.22–0.25 in the upper section. The concentration ratio in the upper section of the core was similar to the ratio 0.23 found in the western Deccan Basalt region through which the river originates. A higher concentration of lead and chromium was observed in the upper section of the core compared to bottom section indicating the impact of river input on the geochemical character of dam sediment.  相似文献   
94.
The impact of emissions from the Siberian Chemical Plant (Tomsk oblast) on reproduction and embryonic development of the fieldfare was studied. Bird abundance, clutch size, and egg volume in the impact and background (control) zones were similar, but partial brood mortality in the impact zone proved to be significantly higher, and the frequency of embryonic pathologies (including developmental abnormalities) was also several times higher than in the control.  相似文献   
95.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   
96.
强化生物通风修复过程中柴油衰减规律及其影响因素研究   总被引:1,自引:0,他引:1  
强化生物通风技术对于修复因地下储油罐泄漏引起的土壤污染具有很大的应用前景。通过室内土柱模拟柴油泄漏污染土壤,从土柱中总石油烃(total petroleum hydrocarbon,TPH)剖面分布随时间的变化及降解模式角度,分析了其自然衰减和强化生物通风过程。结果表明:初始柴油浓度直接影响着各柱在自然衰减和强化生物通风过程中柱内的残余TPH平衡分布曲线的形状和浓度峰值位置;在前期自然衰减过程中(约1个月),当土壤中的柴油浓度为5 000~40 000 mg油/kg土时,整个柱内TPH变化的主要原因是重力扩散迁移的结果;当土壤中的柴油浓度≤5 000 mg油/kg土时,其TPH的变化不仅是重力扩散迁移作用的结果,生物降解作用也存在;通风约2个月后,抽提作用对于保持土柱上部柴油浓度稳定变化的意义较为突出。  相似文献   
97.
Coal-fired power generation is a principal energy source throughout the world. Approximately, 70-75% of coal combustion residues are fly ash and its utilization worldwide is only slightly above 30%. The remainder is disposed of in landfills and fly ash basins. It is desirable to revegetate these sites for aesthetic purposes, to stabilize the surface ash against wind and water erosion and to reduce the quantity of water leaching through the deposit. Limitations to plant establishment and growth in fly ash can include a high pH (and consequent deficiencies of Fe, Mn, Cu, Zn and P), high soluble salts, toxic levels of elements such as B, pozzalanic properties of ash resulting in cemented/compacted layers and lack of microbial activity. An integrated organic/biotechnological approach to revegetation seems appropriate and should be investigated further. This would include incorporation of organic matter into the surface layer of ash, mycorrhizal inoculation of establishing vegetation and use of inoculated legumes to add N. Leaching losses from ash disposal sites are likely to be site-specific but a sparse number of studies have revealed enriched concentrations of elements such as Ca, Fe, Cd, Pb, and Sb in surrounding groundwater. This aspect deserves further study particularly in the longer-term. In addition, during weathering of the ash and deposition of organic matter during plant growth, a soil will form with properties vastly different to that of the parent ash. In turn, this will influence the effect that the disposal site has on the surrounding environment. Nevertheless, the effects of ash weathering and organic matter accumulation over time on the chemical, physical and biological properties of the developing ash-derived soil are not well understood and require further study.  相似文献   
98.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   
99.
Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area. However, the availability is considerably less than anthropogenic contaminants and must therefore be assessed differently. The pre- and post-monsoon sampling over two hydrological cycles in 2002 and 2003 indicate that the As, Cd and Pb contaminants are more mobile and may expect to reach the groundwater. The other contaminants seem to be much more stable. The contamination is especially serious in the industrial area as it is housing a large permanent residing population. The study not only aims at determining the natural background levels of trace elements as a guide for future pollution monitoring but also focuses on the pollution vulnerability of the watershed. A plan of action for remediation is recommended.  相似文献   
100.
Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year’s investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r ≥ 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号