首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1718篇
  免费   46篇
  国内免费   160篇
安全科学   37篇
废物处理   21篇
环保管理   249篇
综合类   535篇
基础理论   258篇
污染及防治   492篇
评价与监测   250篇
社会与环境   66篇
灾害及防治   16篇
  2024年   3篇
  2023年   14篇
  2022年   17篇
  2021年   30篇
  2020年   50篇
  2019年   28篇
  2018年   44篇
  2017年   35篇
  2016年   48篇
  2015年   61篇
  2014年   53篇
  2013年   118篇
  2012年   97篇
  2011年   192篇
  2010年   113篇
  2009年   188篇
  2008年   166篇
  2007年   135篇
  2006年   78篇
  2005年   48篇
  2004年   38篇
  2003年   54篇
  2002年   36篇
  2001年   29篇
  2000年   44篇
  1999年   23篇
  1998年   18篇
  1997年   23篇
  1996年   22篇
  1995年   12篇
  1994年   18篇
  1993年   30篇
  1992年   23篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1924条查询结果,搜索用时 15 毫秒
921.
微生物-植物联合修复技术作为一种低耗高效的新型修复手段已经被广泛应用于有机污染土壤的修复领域并取得了较好的效果,新型生物资源的应用将推动该方法的进一步发展。本研究采用温室盆栽实验,以里氏木霉(Trichodermaressei FS10-C)、根瘤菌(Rhizobium meliloti)和紫花苜蓿(Medicago sativa L.)作为供试生物,设置添加灭活菌剂-无紫花苜蓿(CK)、添加灭活菌剂-种植紫花苜蓿(A)、接种木霉菌剂-种植紫花苜蓿(TA)、接种木霉菌根瘤菌复合菌剂-种植紫花苜蓿(TRA)4种处理,探究微生物-植物联合修复对多环芳烃(PAHs)污染土壤的生物修复效果及其微生态效应。结果表明,经过60 d的培养,微生物不仅促进了紫花苜蓿的生长,而且在紫花苜蓿的协同作用下进一步提高了土壤中PAHs降解率。TA处理中紫花苜蓿生物量增加了5.88%,而TRA处理进一步促进了紫花苜蓿的生长,其生物量增加了11.15%;A、TA和TRA处理下土壤中PAHs的降解率分别为17.02%、25.62%、32.93%,显著(p〈0.05)高于处理CK(5.67%)。此外,接种菌剂处理(TA、TRA)对土壤中高分子量PAHs具有更好的降解效果,A处理土壤中4-、5(+6)环PAHs的降解率分别为18.13%、24.74%,TA处理为21.41%、28.34%,而TRA处理则为21.29%、30.11%。同时,紫花苜蓿能够通过其根际效应显著促进土壤微生物活性,相较于CK处理,A、TA、TRA处理土壤脱氢酶活性分别提高了33.20%、34.58%、32.65%,A、TA、TRA处理AWCD值和微生物群落多样性指数均显著(p〈0.05)高于CK。通过木霉、根瘤菌与紫花苜蓿联合作用不仅可以有效地降解土壤中的PAHs,而且能够恢复土壤微生物生态功能多样性和稳定性。因此,该方法是一种极具潜力的生物修复手段,具有广阔的市场应用前景。  相似文献   
922.
草地是我国最大的陆地生态系统,土壤呼吸是草地碳循环研究的重要内容,是土壤碳库输出的主要方式,影响大气中CO2浓度变化。放牧是草地主要利用方式之一,通过动物采食和践踏,改变植被冠层结构,对土壤理化性质、土壤有机质和土壤微生物产生影响,进而改变土壤呼吸速率。为探究不同载畜率对短花针茅(Stipa breviflora)荒漠草原土壤呼吸速率的影响,2011—2012年用Li-8100开路式碳通量测定系统,对生长季内(6—10月)4个不同载畜率处理下的土壤呼吸进行测定,测定周期为2周1次。辅助测定地下10 cm的土壤温度及土壤湿度,并分析土壤呼吸与土壤温、湿度的关系。结果表明:1)2011年不同载畜率对土壤呼吸速率无显著影响,表现为对照〉中度放牧〉轻度放牧〉重度放牧的变化趋势。2012年与对照(1.6μmol·m-2·s-1)相比,重度放牧(1.07μmol·m-2·s-1)显著降低土壤呼吸速率。总体而言,2011年土壤呼吸速率低于2012年,但差异不显著。2011年土壤温度(20.73℃)显著高于2012年(14.38℃),不同处理间无显著差异,重度放牧区偏高。2012年土壤湿度(7.24%)显著高于2011年(4.11%),对2年数据整体分析发现,轻度放牧区土壤湿度显著低于对照和中度放牧。2011年土壤湿度变化趋势为中度放牧〉对照〉重度放牧〉轻度放牧。2012年,轻度放牧土壤湿度最小,各处理间差异不显著。2)2011年,土壤呼吸与土壤温度月动态无明显规律,与土壤湿度呈现相反的变化趋势。2012年土壤呼吸的月动态与土壤温、湿度变化趋势相似。3)2011年,土壤呼吸速率随温度升高出现波动,与土壤湿度呈负相关。2012年,土壤呼吸速率随土壤温、湿度升高而增大。在干旱年份,降水减少会掩盖放牧对土壤呼吸的影响;在降雨较多的年份,重度放牧显著降低土壤呼吸速率。  相似文献   
923.
Soil organic carbon (SOC) and soil total nitrogen (STN) concentrations and stocks are essential for improving soil quality and increasing C-reservoir. The study aimed at quantifying the dynamics of soil properties under different land use in Imo watershed where there is no knowledge about the effects of land use on SOC and STN pool. Six land use: arable land (AL), forest land (FL), grassland (GL), shrubland hills (SL), urban built-up green (UL), and freshwater swamp-mangrove wetland (WL) were classified using ArcGIS 10.1 and FAO land use classification system. Soil samples were collected and analyzed from each land use under different soil depths and slope positions with three replications. Topsoil layer (0–30?cm) contributed to more than 90% of the total soil nutrients. Land use significantly affected SOC content, STN content, and bulk density. SOC and STN concentrations were in the order of FL?>?WL?>?GL?>?SL?>?UL?>?AL which revealed the potentials of FL and WL for SOC and STN sequestration. The study provides land users with the information to improve soil quality, conserve C and N stocks for ecological sustainability and climate change mitigation.  相似文献   
924.
Using a standard plot method, the stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in leaves, litter, and soil (0-20 cm depth) was investigated for three forest types: Populus davidiana, Larix principis-rupprechtii, and Pinus tabuliformis. The results showed that the stoichiometry of C, N, and P of the same component in the three forests were significantly different. The C and N contents in leaves, litter, and soil in P. davidiana forest were higher than those in L. principis-rupprechtii and P. tabuliformis forests were. However, P in the L. principis-rupprechtii forest was higher than that in the P. davidiana forest and P. tabuliformis forests were. The C, N, and P contents of the components in the three forests were, in order, leaves > litter > soil, and the three nutrient contents were significantly higher in leaves and litter than they were in soil. C:N and C:P in the three forests exhibited a trend of litter > leaves > soil, whereas that for N:P was leaves > soil > litter. There were highly significant positive relationships in N:P between the litter and the soil in the P. davidiana forest. Leaf C:N and litter C:P in the L. principis-rupprechtii forest were significantly negatively correlated, whereas N:P in the leaves and soil was positively correlated. There was a significant positive correlation in N:P between the leaves and the soil in the P. tabuliformis forest. In conclusion, the N contents in leaves and soil exhibited a significant positive correlation, whereas there was no significant correlation between C, N, and P in litter or soil. Environmental factors had a large influence on the stoichiometry of C, N, and P in soil. In particular, latitude and altitude had the most significant effects on C, N, P, C:N, and C:P and were significantly p ositively correlated. T hese results provide a scientific basis for f urther studies on nutrient utilization a nd t he cyclic characteristics of different forests in this area. © 2018 Science Press. All rights reserved.  相似文献   
925.
In order to understand the interaction between microorganisms in soil attached to the stipes of Tricholoma matsutake, we utilized high-throughput sequencing technology using an Illumina HiSeq 2500 System (San Diego, CA, USA) to explore the bacterial community structure in such soils and analyzed the effects of microorganisms on the formation and growth of T. matsutake. A total of 6 730 sequences were obtained from the samples, and these sequences were clustered into 928 operational taxonomic units (OTUs) at a 97% similarity level. In addition, these OTUs were grouped into 22 bacterial phyla (including 62 classes, 90 orders, 162 families, and 275 genera) and 2 archaeal phyla (including 4 classes, 6 orders, 7 families, and 8 genera). Proteobacteria was the dominant phylum present in all the samples, and these bacteria were significantly more abundant in soils attached to stipe of T. matsutake than they were in the control samples. Similarly, Beta-proteobacteria were the dominant class, and bacteria in this class were less abundant than they were in the control samples. Moreover, the genus Burkholderia within the Proteobacteria was more abundant in the control samples than in the T. matsutake soil samples. Generally, Proteobacteria, especially the genus Burkholderia, played an important role in the growth of T. matsutake, whereas other bacteria, such as Unknown-Ellin 60, would probably inhibit the growth of T. matsutake. This study showed that bacteria might be involved in the growth of T. matsutake and the formation of its fruiting bodies, but they had no positive relationship with bacterial abundance, which may provide theoretical guidance for the cultivation of T. matsutake. © 2018 Science Press. All rights reserved.  相似文献   
926.
To investigate the characteristic changes in soil bacterial community under rice-rice-rape rotation in southern China, soil samples from a 30-year crop rotation and continuous cropping system were collected. Clone library and gene sequence analysis were adopted. The PCR amplification was carried out using universal primers of the 16S rDNA gene. The amplified fragments were then used to construct a clone library. The subclones were sequenced and analyzed. The experimental analysis showed that, in July 2015, and October and April 2016, the Shannon Wiener index and richness index of bacteria from the rotation treatment soils were higher than those of the continuous cropping treatment soil. The soil bacterial diversity of the rotation treatment was higher than that of the continuous cropping treatment. The results of BLAST analysis in the GenBank showed that Proteobacteria accounted 55% of total bacteria in the rotation treatment soil, whereas it accounted for 45% of total bacteria in continuous cropping treatment soil. Gemmatimonadetes accounted for 13% of the total bacteria in rotation treatment and 10% in the continuous cropping treatment. The proportion of Acidobacteria, Firmicutes, and Planctomycetes in rotation soil was less than those in the continuous cropping soil. Proteobacteria and Gemmatimonadetes were the dominant flora in soil. The changes in the predominant bacteria affected the diversity of soil bacteria in rotation and continuous cropping. The sequence analysis showed that the dominant bacteria in the soil were Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, which higher than those in the rice-rice continuous cropping treatment. The sequences similar to Chloroflexi were observed in the rice-rice-rape rotation soils, but not in the continuous cropping soils. The results showed that the soil microbial population is conducted by agricultural tillage, and rice-rice-rape rotation increased the soil bacterial abundance compared with that of the rice-rice continuous treatment. © 2018 Science Press. All rights reserved.  相似文献   
927.
It is of great significance to ability to obtain new natural products with diverse activities through the study of soil microorganisms. However, less than 1% of the total soil microorganisms can be cultured under laboratory conditions, thus limiting the discovery of new compounds. Metagenomics, by which the genomic DNA of soil microorganisms can be extracted and expressed in heterologous hosts, provides a new approach for the functional study of soil microorganisms. Natural halides have good bioactivities, including antibacterial and antitumor activities. Halogenases play an important role in biosynthesis, and introducing bioactivities of halogenated compounds. To investigate the potential of halogenated compounds production from soil microorganisms, a soil metagenomic library was screened by PCR for clones harboring reduced flavin adenine dinucleotide (FADH2) - dependent halogenase genes. Sixty-five positive clones were identified from the library, and the amino acid sequences of halogenase genes within the positive clones were analyzed. Phylogenetic analyses revealed that more than 85% of these genes were separated from known halogenases to form new clades in the phylogenetic tree; moreover the soilderived halogenases showed high diversity. By further biosynthetic gene analysis of the positive clones, a new type I polyketide biosynthetic gene sequence was identified, which is probably related to the biosynthesis of the halogenated type I polyketide. In conclusion, novel and diverse halogenase genes were identified on sixty-five metagenomic clones using a sequence-driven metagenomic approach, laying a foundation for the further discovery of novel natural halides biosynthetic gene clusters and halides. © 2018 Science Press. All rights reserved.  相似文献   
928.
结合重点行业企业用地调查工作实践,分析了我国场地调查土壤中污染物监测分析方法标准现状和存在的问题,包括缺少一些行业特征污染物、重金属形态分析和现场快速检测技术标准,以及部分方法的可比性和适用性较差等,提出了结合污染场地环境调查土壤基质的特点及风险评估与治理修复的需求,加快制定缺失的行业特征污染物和重金属形态分析方法标准,及时修订和完善现行分析方法体系,增强标准的可比性、适用性和可操作性等建议.  相似文献   
929.
综述了国内外在烟草,树木(杨树、柳树、桑树),纤维植物(苎麻、棉花)和蓖麻等非食用植物修复土壤镉方面的研究与应用进展,综合分析其修复能力与经济效益,得出蓖麻和苎麻的修复效果最佳.针对严格管控类耕地土壤镉修复,提出了开展非食用植物修复大田试验示范、研发环境友好型辅助措施、优化种植结构调整生态补偿机制,以及及时开展耕地土壤环境质量类别动态调整等建议.  相似文献   
930.
• PFOS was removed by soil adsorption and plant uptake in the VFCW. • Uptake of PFOS by E. crassipes was more than that of C. alternifolius. • PFOS in wastewater can inhibit the removal of nutrients. • Dosing with PFOS changed the soil microbial community in the VFCW. A vertical-flow constructed wetland (VFCW) was used to treat simulated domestic sewage containing perfluorooctane sulfonate (PFOS). The removal rate of PFOS in the domestic sewage was 93%–98%, through soil adsorption and plant uptake, suggesting that VFCWs can remove PFOS efficiently from wastewater. The removal of PFOS in the VFCW was dependent on soil adsorption and plant uptake; moreover, the percentage of soil adsorption was 61%–89%, and was higher than that of the plants uptake (5%–31%). The absorption capacity of Eichhornia crassipes (E. crassipes) (1186.71 mg/kg) was higher than that of Cyperus alternifolius (C. alternifolius) (162.77 mg/kg) under 10 mg/L PFOS, and the transfer factor of PFOS in E. crassipes and C. alternifolius was 0.04 and 0.58, respectively, indicating that PFOS is not easily translocated to leaves from roots of wetland plants; moreover, uptake of PFOS by E. crassipes was more than that of C. alternifolius because the biomass of E. crassipes was more than that of C. alternifolius and the roots of E. crassipes can take up PFOS directly from wastewater while C. alternifolius needs to do so via its roots in the soil. The concentration of 10 mg/L PFOS had an obvious inhibitory effect on the removal rate of total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the VFCW, which decreased by 15%, 10%, 10% and 12%, respectively. Dosing with PFOS in the wastewater reduced the bacterial richness but increased the diversity in soil because PFOS stimulated the growth of PFOS-tolerant strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号