首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1979篇
  免费   133篇
  国内免费   149篇
安全科学   213篇
废物处理   32篇
环保管理   845篇
综合类   357篇
基础理论   400篇
污染及防治   198篇
评价与监测   136篇
社会与环境   49篇
灾害及防治   31篇
  2023年   31篇
  2022年   33篇
  2021年   54篇
  2020年   53篇
  2019年   55篇
  2018年   31篇
  2017年   64篇
  2016年   76篇
  2015年   75篇
  2014年   79篇
  2013年   90篇
  2012年   74篇
  2011年   142篇
  2010年   80篇
  2009年   190篇
  2008年   116篇
  2007年   112篇
  2006年   80篇
  2005年   86篇
  2004年   68篇
  2003年   71篇
  2002年   67篇
  2001年   55篇
  2000年   62篇
  1999年   58篇
  1998年   46篇
  1997年   32篇
  1996年   38篇
  1995年   29篇
  1994年   21篇
  1993年   18篇
  1992年   14篇
  1991年   14篇
  1990年   10篇
  1989年   17篇
  1988年   13篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有2261条查询结果,搜索用时 15 毫秒
51.
A distributed hydrologic modeling and GIS approach is applied for the assessment of land use impact in the Steinsel sub-basin, Alzette, Grand-Duchy of Luxembourg. The assessment focuses on the runoff contributions from different land use classes and the potential impact of land use changes on runoff generation. The results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land use areas in this catchment, and tends to increase for small floods and for the dry season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to the recession flow. Significant variations in flood volume, peak discharge, time to the peak, etc., are found from the model simulation based on the three hypothetical land use change scenarios.  相似文献   
52.
Spatially comprehensive estimates of the physical characteristics of river segments over large areas are required in many large‐scale analyses of river systems and for the management of multiple basins. Remote sensing and modeling are often used to estimate river characteristics over large areas, but the uncertainties associated with these estimates and their dependence on the physical characteristics of the segments and their catchments are seldom quantified. Using test data with varying degrees of independence, we derived analytical models of the uncertainty associated with estimates of upstream catchment area (CA), segment slope, and mean annual discharge for all river segments of a digital representation of the hydrographic network of France. Although there were strong relationships between our test data and estimates at the scale of France, there were also large relative local uncertainties, which varied with the physical characteristics of the segments and their catchments. Discharge and CA were relatively uncertain where discharge was low and catchments were small. Discharge uncertainty also increased in catchments with large rainfall events and low minimum temperature. The uncertainty of segment slope was strongly related to segment length. Our uncertainty models were consistent across large regions of France, suggesting some degree of generality. Their analytical formulation should facilitate their use in large‐scale ecological studies and simulation models.  相似文献   
53.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications.  相似文献   
54.
Information on distribution and relative abundance of species is integral to sustainable management, especially if they are to be harvested for subsistence or commerce. In northern Australia, natural landscapes are vast, centers of population few, access is difficult, and Aboriginal resource centers and communities have limited funds and infrastructure. Consequently defining distribution and relative abundance by comprehensive ground survey is difficult and expensive. This highlights the need for simple, cheap, automated methodologies to predict the distribution of species in use, or having potential for use, in commercial enterprise. The technique applied here uses a Geographic Information System (GIS) to make predictions of probability of occurrence using an inductive modeling technique based on Bayes' theorem. The study area is in the Maningrida region, central Arnhem Land, in the Northern Territory, Australia. The species examined, Cycas arnhemica and Brachychiton diversifolius, are currently being 'wild harvested' in commercial trials, involving sale of decorative plants and use as carving wood, respectively. This study involved limited and relatively simple ground surveys requiring approximately 7 days of effort for each species. The overall model performance was evaluated using Cohen's kappa statistics. The predictive ability of the model for C. arnhemica was classified as moderate and for B. diversifolius as fair. The difference in model performance can be attributed to the pattern of distribution of these species. C. arnhemica tends to occur in a clumped distribution due to relatively short distance dispersal of its large seeds and vegetative growth from long-lived rhizomes, while B. diversifolius seeds are smaller and more widely dispersed across the landscape. The output from analysis predicts trends in species distribution that are consistent with independent on-site sampling for each species and therefore should prove useful in gauging the extent of resource availability. However, some caution needs to be applied as the models tend to over predict presence which is a function of distribution patterns and of other variables operating in the landscape such as fire histories which were not included in the model due to limited availability of data.  相似文献   
55.
In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (EC< 1.5dSm(-1); pH<8), whereas the quality of ground water remained highly saline and unfit for irrigation and drinking. These observations were compared with the ground scenarios of the study region and possible causes for such changes and the remedial measures for taking up regular agricultural practices are also discussed.  相似文献   
56.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   
57.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   
58.
This research presents a method to determine the maximum potential for the capturing of solar radiation on the rooftop of buildings in an urban environment. This involves the modeling of solar energy potential and comparison to historical building energy demand profiles through the use of 3-D solar simulation software tools and geographic information systems (GIS). The objective is to accurately identify the amount of surface area that is suitable for solar photovoltaic (PV) installations and to estimate the hourly PV electricity generation potential of existing building rooftops in an urban environment. This study demonstrates a viable approach for modeling urban solar energy and offers valuable information for electricity distributors, policy makers, and urban energy planners to facilitate the substantial design of a green built environment. The developed methodology is comprised of three main sections: (1) determination of suitable rooftop area, (2) determination of the amount of incident solar radiation available per rooftop, and (3) estimation of hourly solar PV electricity generation potential. A case study was performed using this method for Ryerson University, located in Toronto, Canada. It was found that solar PV could supply up to 19% of the study area’s electricity demands during peak consumption hours. The potential benefits of solar PV was also estimated based upon hourly greenhouse gas emission intensity factors as well as Time-of-Use (TOU) savings through the Ontario Feed-in-Tariff (FIT) program, which allows for better representation of the positive impacts of solar technologies.  相似文献   
59.
针对北斗导航终端设备开展传统可靠性试验时间长、成本高,难以实现在短期内完成高可靠性指标考核的现状,借鉴加速试验建模技术和相关标准的加速模型参数,进行北斗导航整机可靠性加速建模,设计加速试验剖面和方案,预先评估出北斗导航终端设备的加速因子,通过一组样品即可完成北斗导航的加速试验,实现对北斗导航终端设备高可靠性指标的快速评估。  相似文献   
60.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号