首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5630篇
  免费   601篇
  国内免费   772篇
安全科学   1005篇
废物处理   173篇
环保管理   706篇
综合类   3069篇
基础理论   523篇
环境理论   1篇
污染及防治   403篇
评价与监测   652篇
社会与环境   201篇
灾害及防治   270篇
  2024年   15篇
  2023年   82篇
  2022年   162篇
  2021年   227篇
  2020年   188篇
  2019年   151篇
  2018年   161篇
  2017年   210篇
  2016年   252篇
  2015年   269篇
  2014年   297篇
  2013年   353篇
  2012年   467篇
  2011年   473篇
  2010年   318篇
  2009年   325篇
  2008年   239篇
  2007年   368篇
  2006年   348篇
  2005年   292篇
  2004年   228篇
  2003年   236篇
  2002年   166篇
  2001年   154篇
  2000年   143篇
  1999年   128篇
  1998年   117篇
  1997年   123篇
  1996年   75篇
  1995年   66篇
  1994年   69篇
  1993年   53篇
  1992年   42篇
  1991年   36篇
  1990年   24篇
  1989年   29篇
  1988年   25篇
  1987年   23篇
  1986年   11篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   6篇
  1980年   8篇
  1979年   2篇
  1978年   2篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1969年   1篇
排序方式: 共有7003条查询结果,搜索用时 15 毫秒
311.
水环境质量评价3种方法的应用对比   总被引:6,自引:0,他引:6  
王娟  高原 《工业安全与环保》2007,33(2):16-17,64
从众多水质评价方法中选取单项指数法、加权均值型指数法、模糊数学法进行介绍,并通过运用这3种方法对大汶河某年监测数据的平均值进行评价.经对比分析发现,加权均值型指数法是一种比较实用的水质评价方法,模糊数学法可以作为必要的补充.  相似文献   
312.
林火定位是林火智能监测设备的核心技术。提出了一种基于激光雷达、红外热像仪及组合惯导多数据融合的火点定位方法。首先设计了一个通用的无人机吊舱系统,并基于ROS框架实现数据采集、数据处理和数据传输等功能;其次提出了一个基于无人机吊舱系统的火点全局定位方案,根据红外热像仪成像特性识别火点,同时将密集点云与红外图像进行数据融合,估计出火点的三维空间位置;然后根据无人机位姿提出了一种基于墨卡托投影的火点全局定位方案,得到了火点的GPS位置。最后通过试验得到了该方案的全局定位精度:在实验中经度最大误差为2.36×10-5°,纬度最大误差为1.84×10-5°,高程最大误差为0.926 1 m,为其他林火定位方案提供了技术支持。  相似文献   
313.
Passive sampling of pollutants in water has been gaining acceptance for environmental monitoring. Previously, an integrative passive sampler (the Chemcatcher) was developed and calibrated for the measurement of time weighted average concentrations of hydrophobic pollutants in water. Effects of physicochemical properties and environmental variables (water temperature and turbulence) on kinetic and thermodynamic parameters characterising the exchange of analytes between the sampler and water have been published. In this study, the effect of modification in sampler housing geometry on these calibration parameters was studied. The results obtained for polycyclic aromatic hydrocarbons show that reducing the depth of the cavity in the sampler body geometry increased the exchange kinetics by approximately twofold, whilst having no effect on the correlation between the uptake and offload kinetics of analytes. The use of performance reference compounds thus avoids the need for extensive re-calibration when the sampler body geometry is modified.  相似文献   
314.
315.
A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test.  相似文献   
316.
GOAL, SCOPE, AND BACKGROUND: Diesel exhaust is believed to consist of thousands of organic constituents and is a major cause of urban pollution. We recently reported that a systematic separation procedure involving successive solvent extractions, followed by repeated column chromatography, resulted in the isolation of vasodilatory active nitrophenols. These findings indicated that the estimation of the amount of nitrophenols in the environment is important to evaluate their effect on human health. The isolation procedure, however, involved successive solvent extractions followed by tedious, repeated chromatography, resulting in poor fractionation and in a significant loss of accuracy and reliability. Therefore, it was crucial to develop an alternative, efficient, and reliable analytical method. Here, we describe a facile and efficient acid-base extraction procedure for the analysis of nitrophenols. MATERIALS AND METHODS: Diesel exhaust particles (DEP) were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). Gas chromatography-mass spectrometry (GC-MS) analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). RESULTS: A solution of DEP in 1-butanol was extracted with aqueous NaOH to afford a nitrophenol-rich oily extract. The resulting oil was methylated with trimethylsilyldiazomethane and subsequently subjected to GC-MS analysis, revealing that 4-nitrophenol, 3-methyl-4-nitrophenol, 2-methyl-4-nitrophenol, and 4-nitro-3-phenylphenol were present in significantly higher concentrations than those reported previously. DISCUSSION: Simple acid-base extraction followed by the direct analysis of the resulting extract by GC-MS gave only broad peaks of nitrophenols with a poor detection limit, while the GC-MS analysis of the sample pretreated with (trimethylsilyl)diazomethane gave satisfactorily clear chromatograms with sharp peaks and with a significantly lowered detection limit (0.5 ng/ml, approximately 100 times). CONCLUSION: The present method involving an acid-base extraction, in situ derivatization, and GC-MS analysis has shown to be a simple, efficient, and reliable method for the isolation and identification of the chemical substances in DEP.  相似文献   
317.
碱熔融法合成NaA和NaX型粉煤灰沸石的品质表征   总被引:10,自引:2,他引:8  
以粉煤灰为原料采用碱熔融法合成了2种单一沸石矿物种的NaA和NaX型沸石,并对产物的结构、性能和应用指标进行了详细表征.经x射线衍射和IR光谱分析,表明合成产物是无杂晶生成的NaA和NaX型沸石相;在扫描电镜观察下,产物分别具有NaA和NaX型沸石的立方体和八面体晶体骨架结构.DTA分析表明了合成产物中沸石水的存在,且产物热稳定性较好.通过对比,粉煤灰合成的NaA和NaX型沸石的比表面积达到了相应商品沸石的66.9%和83.6%;孔容为41.1%和70.2%;阳离子交换容量(CEC,cation exchange capacity)为82.93%和84.31%.通过比较化学组成表明,大规模应用合成产物不会对环境造成危害.  相似文献   
318.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   
319.
A new and simple equation has been presented here for calculation of adsorption and desorption rate constants of Langmuir-Freundlich kinetic equation. The derivation of new equation is on the basis of extension and correction to the geometric method which has been presented by Kuan et al. [Kuan, W.-H., Lo, S.-L., Chang, C.M., Wang, M.K., 2000. A geometric approach to determine adsorption and desorption kinetic constants. Chemosphere 41, 1741-1747] for the kinetics of adsorption/desorption in aqueous solutions. The correction is to consider that the concentration of solute is not constant and changes as adsorption proceeds. The extension is that we applied Langmuir-Freundlich kinetic model instead of Langmuir kinetic model to consider the heterogeneity and therefore it is more applicable to the real systems. For solving Langmuir-Freundlich kinetic model, some geometric methods and also Taylor expansion were used and finally a simple and novel equation was derived (Eq. (20)) for calculation of adsorption rate constant. This new method was named "extended geometric method". The input data of the obtained equation can be simply derived from initial data of adsorption kinetics. Finally the adsorption of methyl orange onto granular activated carbon was carried out at dynamic and equilibrium conditions and the capabilities of extended geometric method were examined by the experimental data.  相似文献   
320.
Nitrogen Dioxide (NO2) is a common urban air pollutant that results from the combustion of fossil fuels. It causes serious human health effects, is a precursor to the formation of ground level ozone, another serious air pollutant, and is one of the six criteria air pollutants established by the United States (U.S.) Clean Air Act (CAA). Ogawa Passive Sampling Devices (PSDs) for NO2 were collocated and operated at six NO2 Federal Reference Method (FRM) monitor locations in the El Paso, Texas area for the 2004 calendar year. Passive samples were taken at 2-week, 3-week, and 4-week intervals and compared against the continuously operating FRM monitors. Results showed that the collective NO2 annual arithmetic mean for all passive monitors was identical to the NO2 mean for all FRM monitors. Of the individual locations, three passive annual NO2 means were identical to their corresponding FRM means, and three passive annual NO2 means differed from their corresponding FRM means by only one part per billion (ppb). Linear correlation analysis between all readings of the individual NO2 PSDs and FRM values showed an average absolute difference of 1.2 ppb with an r 2 of 0.95. Paired comparison between high and low concentration annual NO2 sites, seasonal considerations, and interlab quality control comparisons all showed excellent results. The ease of deployment, reliability, and the cost-savings that can be realized with NO2 PSDs could make them an attractive alternative to FRM monitors for screening purposes, and even possibly an equivalent method for annual NO2 monitoring. More tests of the Ogawa NO2 PSD are recommended for different ecosystem and climate regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号