首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
  国内免费   15篇
安全科学   2篇
废物处理   7篇
环保管理   17篇
综合类   21篇
基础理论   13篇
污染及防治   17篇
评价与监测   5篇
社会与环境   5篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   10篇
  2013年   13篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
81.
冀秀玲  刘芳  沈群辉  刘扬 《生态环境》2011,20(5):927-933
抗生素滥用及其诱导产生的抗生素抗性基因(antibiotic resistance genes,ARGs)污染已经引起人们的广泛关注。选取上海市某地养殖场作为研究对象,采用高效液相色谱-质谱法和实时荧光定量PCR法,对养殖场污水及附近农田灌溉渠河水中5种四环素及磺胺类抗生素,8种对应的ARGs的含量、特征及相关性进行了研究。研究结果显示,在采集的水样中均含有待检测的5种抗生素,养殖污水中抗生素含量高于农田灌溉河水,各样本中四环素类抗生素含量均略高于磺胺类抗生素,2种四环素抗生素总量为294.0~376.1μg﹒L-1,3种磺胺类抗生素总量为197.7~323.0μg﹒L-1。养殖场污水样本中8种ARGs均有检出,磺胺类抗性基因中sul(A)含量最高,绝对拷贝数为108.4108~1010.3728;四环素类抗性基因中tet(W)含量最高,绝对拷贝数为106.18805~107.8874。农田灌溉渠河水中除tet B(P)外,其它7种ARGs均有检出。样本中ARGs相对表达量总体呈现磺胺类ARGs高于四环素类ARGs的特点。抗生素浓度与ARGs相对表达量的Pearson相关性分析显示,样本中sul(Ⅲ)与磺胺类抗生素浓度存在较明显的正相关性,但其它几种ARGs与抗生素则未见或存在一定负相关性。表明除抗生素外,ARGs在水环境中的丰度可能与ARGs种类及其它环境因子有关。该研究将有助于认识上海地区养殖场废水中抗生素和ARGs污染状况,为进一步开展黄浦江水域抗生素尤其是ARGs的污染研究提供数据基础。  相似文献   
82.
The special project RAISA (Advanced Researches for Innovation in Agricultural Systems) of the National Research Council of Italy concerns the development of new methodologies for the study and evaluation of the impact of agrotechnologies on the environment. In the project, several trans-disciplinary Units have worked together since 1990. The aim of the project is to define systems, using tools such as remote sensing and Geographical Information Systems, for decision making support in land planning and land use management, with particular attention to groudwater table pollution. The fundamental steps for evaluation of the impact of agrotechnologies on the Po river watershed, 75,000 km2 in northern Italy, and Tevere (Tiber) river watershed, 17.169 km2 in Central Italy are described here. The study concerns particular areas located in the western part of the Po River plain, where flooded rice is the main crop, and in the central plain of the Tevere basin where the risk of water pollution is considerable, due to small and medium sized swine breeding farms. The aspects considered were water pollution due to mineral nitrogen used to fertilize the rice crop and the nitrogen contained in the waste water from pig farms. For the Po river basin the methodology developed was based on the integration of satellite remote sensing images, and the available cartography, such as topographic and thematic maps, together with the hydrological and the toxicological data of the chemical fertilizers employed, summarized in maps of the groundwater table pollution hazard. A simpler evaluation was obtained in the Tevere river basin: the thematic layers were crossed in bi-directional matrices and the result merged with the map of the territorial distributionof the swine. In both cases the selected information was integrated and processed in Integrated sub-basin scale. The GISs led to the development of a user-friendly system for formalizing our knowledge of the degree of pollution hazard in simple and readable maps.Research supported by National Research Council of Italy, Special Project RAISA, sub-project N. 1 Paper N.  相似文献   
83.
The effect of dairy farming on water quality in New Zealand streams has been identified as an important environmental issue. Stream fencing, to keep cattle out of streams, is seen as a way to improve water quality. Fencing ensures that cattle cannot defecate in the stream, prevents bank erosion, and protects the aquatic habitat. Stream fencing targets have been set by the dairy industry. In this paper the results of a study to identify the factors influencing dairy farmers' decisions to adopt stream fencing are outlined. Qualitative methods were used to gather data from 30 dairy farmers in four New Zealand catchments. Results suggest that farm contextual factors influenced farmers' decision making when considering stream fencing. Farmers were classified into four segments based on their reasons for investing in stream fencing. These reasons were fencing boundaries, fencing for stock control, fencing to protect animal health, and fencing because of pressure to conform to local government guidelines or industry codes of practice. This suggests that adoption may be slow in the absence of on-farm benefits, that promotion of stream fencing needs to be strongly linked to on-farm benefits, and that regulation could play a role in ensuring greater adoption of stream fencing.  相似文献   
84.
张媛  宋璐  王灿  熊丽君 《环境工程学报》2023,17(5):1612-1619
由于大量的抗生素被用于畜禽养殖行业,畜禽养殖场中的抗生素抗性基因 (ARGs,Antibiotic resistance genes) 问题正逐渐变得严重。为调查畜禽养殖场中气载ARGs的污染特征及季节性变化,分别在冬季和夏季采集陕西省渭南市养猪场和养鸡场的空气和粪便样品,分析不同种类气载ARGs的污染水平及ARGs与环境因子的相关性。结果表明:畜禽养殖场空气中主要检出的ARGs类型为万古霉素类抗性基因、MLSB类抗性基因、四环素类抗性基因、FCA类抗性基因;在不同类型养殖场中气载ARGs总浓度趋势为养鸡场>养猪场,且养鸡场中每种ARGs浓度比养猪场中高约2个数量级;在不同季节养殖场中,气载ARGs总浓度趋势为冬季>夏季,且每种ARGs在冬季均高于夏季2~3个数量级。Pearson相关性分析结果表明,养殖场中气载ARGs总浓度与PM2.5呈显著相关 (P<0.05) ,与其他环境因子无显著相关性。本研究成果可为控制畜禽养殖场中气载ARGs污染的传播及防控提供参考。  相似文献   
85.
Should we continue to support publicly funded research on genetically engineered herbicide resistant crops? In Part One, I discussed the difference between science and ethics, presented a brief history of weed control, and explained three moral principles undergirding my environmentalist perspective. I then argued that unqualified endorsement (E) of the research is unjustified, as is unqualified opposition (O). In Part Two, I argue against qualified endorsement (QE), and for qualified opposition (QO).  相似文献   
86.
The characteristics and role of the family farm have profoundly influenced the quality of human ecology. Considerable debate exists about the role of the family farm in the United States. This article attempts to clarify aspects of this debate by: (a) examining various definitions of the family farm and the conclusions that flow from these definitions, (b) presenting results of a structural analysis of American agriculture to better understand the origins of the debate and the relationship between people and agriculture, and (c) discussing the relevancy of some data and concepts used in evaluating the consequences of the structure of the agricultural sector.  相似文献   
87.
The swine industry in China has grown rapidly over last two decades. Great amount of pig manure is generated in China, which can be used as organic fertilizers on agricultural lands. Meanwhile, the organic arsenic compounds have been used as feed additives for swine disease control and weight improvement. Once the excessive additives are released in the environment, arsenic may compromise food safety and environmental quality. There is a growing public concern about the arsenic residues accumulation in pig manure, however, little work has been done to investigate the exact arsenic content in pig feed and the residues in manure in China This study investigates the concentrations of arsenic in 29 pig feed samples and 29 manure samples collected from eight pig farms in the Chaoyang district, Beijing city. The detected rate of arsenic in 29 couples of samples was 100%. The concentrations of arsenic in pig feeds and manures ranged from 0.15 to 37.8 mg/kg and 0.42 to 119.0 mg/kg, respectively. The result showed that arsenic concentration in pig manure will be greatly elevated when the arsenic in pig feed was largely increased. The loading rates of pig manure in fourteen Beijing counties and districts were in the range of 2.7–57.2 t/ha yr. Accordingly, the potential soil arsenic increase rates resulting from land application of pig manure might range between 11.8 and 78.9 μg/kg yr. Despite these findings, it is too early to draw the conclusion that arsenic pollution from pig manure is serious in Beijing farmland; therefore, longitudinal studies about the chemical form transformation and the environmental behaviors of pig manure arsenic are required in order to come up with more definitive conclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号