首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   9篇
  国内免费   66篇
安全科学   65篇
废物处理   13篇
环保管理   46篇
综合类   134篇
基础理论   36篇
污染及防治   40篇
评价与监测   82篇
社会与环境   7篇
灾害及防治   2篇
  2024年   1篇
  2023年   14篇
  2022年   11篇
  2021年   26篇
  2020年   27篇
  2019年   14篇
  2018年   12篇
  2017年   17篇
  2016年   18篇
  2015年   16篇
  2014年   22篇
  2013年   11篇
  2012年   16篇
  2011年   30篇
  2010年   18篇
  2009年   24篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   18篇
  2002年   12篇
  2001年   9篇
  2000年   9篇
  1999年   7篇
  1998年   11篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1986年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
排序方式: 共有425条查询结果,搜索用时 0 毫秒
51.
This survey undertaken in Greece (Mytilene town) has shown that Volatile halogenated organics (VHO) are present in swimming pool water. Analysis was performed by purge‐and‐trap (PAT) gas chromatographic (GC) technique and samples from two public indoor swimming pools in Mytilene were analyzed for VHO. Water samples were collected every week for a period of three months, and have shown the occurrence of chloroform, dichlorobromomethane, chlorodi‐bromomethane, bromoform (all four are trihalomethanes [THMs]), as a result of the chlorination and the occurrence of tetrachloroethylene and 1,1,1,2‐tetrachloroethane is assigned to their introduction as impurities during the process treatment of water. The levels of concentrations ranged from 4.0 to 26.0 μg/1 for chloroform, from 0.26 to 7.0 μg/1 for dichlorobromomethane, from 0.5 to 3.0 μg/1 for chlorodibromomethane, from 0.07 to 0.9 μg/1 for bromoform, from no detectable levels to 0.07 μg/1 for tetrachloroethylene and from no detectable levels to 0.2 μg/1 for 1,1,1,2‐tetrachloroethane.  相似文献   
52.
This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NO x (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal-catalysis for indoor air quality improvement is reviewed. For wastewater treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.  相似文献   
53.
利用物料衡算和源排放测试对江苏省典型汽车涂装企业VOCs排放特征进行研究,并提出最佳治理技术。结果表明,大客车单位涂装面积VOCs排放量达到300 g/m2以上,小轿车为40~60 g/m2。苯系物是VOCs排放的重要组分,最高占比为33.2%~64.6%。乙酸丁酯、异丙醇、丁醇等醇酯类物质近年来广泛用于代替苯系物溶剂,其排放占比为29.6%~61.2%。汽车涂装行业最佳治理技术包括采用3C1B、水性免中涂等先进涂装工艺,用粉末涂料、水性涂料和高固体成分涂料等代替溶剂型涂料,从源头控制排放。采用干式漆雾分离技术、转轮浓缩吸附-蓄热式焚烧技术等先进尾气治理技术,VOCs去除率可达99%以上。  相似文献   
54.
含硫化合物的气相色谱检测响应特性研究   总被引:4,自引:0,他引:4  
王雷  杨震 《上海环境科学》1999,18(5):233-235
利用气相色谱(配炎焰光度检测器)对二硫化碳(CS2)、甲硫醇(CH3CH)、甲硫醚(DMS)和二甲二硫醚(DMDS)4种含硫物质进行了分析检测,着重讨论了气相色谱仪的各项参数对几种含硫物质响应和分离效果的影响。结果表明:该分析对含硫气体的最小检测浓度达到ppb级。在各项参数中,色谱柱温度在N2压力对各含硫物质响应和分离度影响最大,汽化室和检测器温度及空气压力对它们的影响相对较小。  相似文献   
55.
炼焦过程排放挥发性有机物的排放特征和组成分布研究   总被引:1,自引:0,他引:1  
为控制炼焦排放以及为预防城市大气污染提供可靠的污染源数据支持,利用不锈钢采样罐和全自动预浓缩/GC/MS系统,研究了58-Ⅱ型和JN43-80型焦炉在装煤时刻和炼焦过程(包括装煤时刻)中挥发有机物(VOCs)的排放特征及其组成分布,分析了焦化行业排放VOCs的反应活性。研究发现,在装煤时刻和炼焦过程中,58-Ⅱ型焦炉产生的总挥发性有机物(TVOCs)浓度分别为7022μg/m~3和6266μg/m~3;JN43-80型焦炉产生的TVOCs浓度分别为4185μg/m~3和3298μg/m~3。装煤时刻产生的TVOCs浓度明显高于炼焦过程产生的。炼焦过程无组织排放的VOCs包含烯烃、烷烃、芳香烃、卤代烃以及少量的醛和酮,其中乙烯、乙烷、丙烯、苯、甲苯等为主要成分。这些产生的VOCs反应活性各不相同,活性最大的是烯烃类物质,其活性占TVOCs反应活性比重为(86.2±2.1)%;其次是芳香烃类物质,其活性比重为(9.2±3.1)%;反应活性最大的5个物种分别是丙烯、乙烯、1,3-丁二烯、1-丁烯以及苯乙烯。  相似文献   
56.
水中挥发酚检测方法初探   总被引:2,自引:0,他引:2  
酚类属高毒物质,水中挥发酚的含量直接影响人类健康。近10年来,我国研究人员对水中挥发酚的测定方法开展了很多研究,特别对于采用4-氨基安替比林分光光度法(4-AAP)(GB 7490-1987)测定水中挥发酚的各个环节,如样品的采集、保存、预处理、试剂纯度、反应时间控制等相关因素进行了研究,找到了影响含量准确的因素,为测定水中挥发酚的含量提供了快速、准确、重复性好的方法。对一些非国标法测定水中挥发酚的方法也进行了介绍。文章对这些方法进行了分类总结。希望能对实验人员有所帮助。  相似文献   
57.
Snowmobile use in Yellowstone National Park has been shown to impact air quality, with implications for the safety and welfare of Park staff and other Park resource values. Localized impacts have been documented at several high-use sites in the Park, but the broader spatial variability of snowmobile emissions and air quality was not understood. Measurements of 87 volatile organic compounds (VOCs) were made for ambient air sampled across the Park and West Yellowstone, Montana, during 2 days of the 2002–2003 winter use season, 1 year before the implementation of a new snowmobile policy. The data were compared with similar data from pristine West Coast sites at similar latitudes. Backward trajectories of local air masses, alkyl nitrate-parent alkane ratios, and atmospheric soundings were used to identify the VOC sources and assess their impact. Different oversnow vehicle types used in the Park were sampled to determine their relative influence on air mass pollutant composition. VOCs were of local origin and demonstrated strong spatiotemporal variability that is primarily influenced by levels of snowmobile traffic on given road segments at different times of day. High levels of snowmobile traffic in and around West Yellowstone produced consistently high levels of benzene, toluene, and carbon monoxide.  相似文献   
58.
Some plants are known as indoor air purifiers. A large number of studies report kinetic purification results for an extensive panel of plants, i.e. the pollutant concentration (volatile organic compounds, as known as VOC, most of the time) is continuously monitored by gas chromatography. However, only a few papers describe the mechanisms involved in such processes. This study deals with the use of secondary ion mass spectrometry imaging as an efficient tool to locate atmospheric pollutant as bromotoluene within the Hedera helix plant (leaf, roots) and the substrate on which it was previously grown. Hedera helix plants have been placed in a pollution chamber with control of the exposure parameters. Plant and soil samples excised were transferred into a fixative solution of glutaraldehyde and paraformaldehyde for a few days, were dehydrated using ethanol and were embedded with resin. Cross sections were made from the pale brown solids obtained. Then, a device using a cathodic pulverization device capable of depositing a few nanometers of gold atoms over the sample was used to make the surface electronically conductive for the NanoSIMS. Hence, polluted and unpolluted samples of Hedera helix and substrates were obtained following a careful procedure that allowed for the discrimination between polluted and nonpolluted ones. Nanoscale spatial resolution was an invaluable tool (NanoSIMS) to achieve this, and proved that VOCs, such as bromotoluene, were actually trapped by plants such as Hedera helix.  相似文献   
59.
Currently, modeling studies tend to significantly underestimate observed space-based glyoxal(CHOCHO) vertical column densities(VCDs), implying the existence of missing sources of glyoxal. Several recent studies suggest that the emissions of aromatic compounds and molar yields of glyoxal in the chemical mechanisms may both be underestimated, which can affect the simulated glyoxal concentrations. In this study, the influences of these two factors on glyoxal amounts over China were investigated using the RAMS-CMAQ modeling system for January and July 2014. Four sensitivity simulations were performed, and the results were compared to satellite observations. These results demonstrated significant impacts on glyoxal concentrations from these two factors.In case 1, where the emissions of aromatic compounds were increased three-fold,improvements to glyoxal VCDs were seen in high anthropogenic emissions regions. In case 2, where molar yields of glyoxal from isoprene were increased five-fold, the resulted concentrations in July were 3–5-fold higher, achieving closer agreement between the modeled and measured glyoxal VCDs. The combined changes from both cases 1 and 2 were applied in case 3, and the model succeeded in further reducing the underestimations of glyoxal VCDs. However, the results over most of the regions with pronounced anthropogenic emissions were still underestimated. So the molar yields of glyoxal from anthropogenic precursors were considered in case 4. With these additional mole yield changes(a two-fold increase), the improved concentrations agreed better with the measurements in regions of the lower reaches of the Yangtze River and Yellow River in January but not in July.  相似文献   
60.
The cryptomelane-type manganese oxide (OMS-2)-supported Co (xCo/OMS-2; x = 5, 10, and 15 wt.%) catalysts were prepared via a pre-incorporation route. The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV). Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD), Fourier transform infrared spectroscopic (FT-IR), scanning electron microscopic (SEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature-programmed reduction (H2-TPR) techniques. Among all of the catalysts, 10Co/OMS-2 performed the best, with the T90%, specific reaction rate at 245°C, and turnover frequency at 245°C (TOFCo) being 245°C, 1.23 × 10−3 moltoluene/(gcat·sec), and 11.58 × 10−3 sec−1 for toluene oxidation at a space velocity of 60,000 mL/(g·hr), respectively. The excellent catalytic performance of 10Co/OMS-2 were due to more oxygen vacancies, enhanced redox ability and oxygen mobility, and strong synergistic effect between Co species and OMS-2 support. Moreover, in the presence of poisoning gases CO2, SO2 or NH3, the activity of 10Co/OMS-2 decreased for the carbonate, sulfate and ammonia species covered the active sites and oxygen vacancies, respectively. After the activation treatment, the catalytic activity was partly recovered. The good low-temperature reducibility of 10Co/OMS-2 could also facilitate the redox process accompanied by the consecutive electron transfer between the adsorbed O2 and the cobalt or manganese ions. In the oxidation process of toluene, the benzoic and aldehydic intermediates were first generated, which were further oxidized to the benzoate intermediate that were eventually converted into H2O and CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号