首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7350篇
  免费   916篇
  国内免费   1577篇
安全科学   1575篇
废物处理   113篇
环保管理   996篇
综合类   4114篇
基础理论   1157篇
污染及防治   488篇
评价与监测   335篇
社会与环境   641篇
灾害及防治   424篇
  2024年   54篇
  2023年   183篇
  2022年   333篇
  2021年   376篇
  2020年   363篇
  2019年   296篇
  2018年   249篇
  2017年   368篇
  2016年   378篇
  2015年   403篇
  2014年   333篇
  2013年   407篇
  2012年   600篇
  2011年   655篇
  2010年   513篇
  2009年   554篇
  2008年   391篇
  2007年   449篇
  2006年   466篇
  2005年   327篇
  2004年   253篇
  2003年   241篇
  2002年   244篇
  2001年   183篇
  2000年   184篇
  1999年   144篇
  1998年   142篇
  1997年   122篇
  1996年   101篇
  1995年   94篇
  1994年   81篇
  1993年   65篇
  1992年   58篇
  1991年   31篇
  1990年   22篇
  1989年   26篇
  1988年   22篇
  1987年   18篇
  1986年   17篇
  1985年   9篇
  1984年   8篇
  1981年   11篇
  1980年   13篇
  1979年   12篇
  1978年   9篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   9篇
  1970年   5篇
排序方式: 共有9843条查询结果,搜索用时 31 毫秒
991.
农业非点源污染田间模型及其应用   总被引:7,自引:4,他引:3  
李强坤  李怀恩  胡亚伟  陈伟伟  孙娟 《环境科学》2009,30(12):3509-3513
非点源污染的负荷定量化研究是控制、评价和管理非点源污染的基础.农业非点源污染负荷估算包括农田排水估算和排水中的污染物浓度预测2个环节.依据水量平衡原理,农田排水应用DRAINMOD模型估算;将农田的施肥和灌溉过程"合成"作为田间污染物浓度的脉冲输入,农田排水中的污染物浓度变化则视作对应于此脉冲输入的响应过程,而污染物在田间的复杂迁移转化过程以逆高斯概率密度函数隐含表达.以此为基础,构建了农田尺度农业非点源污染负荷估算模型.以青铜峡灌区典型试验区为例,对稻田排水沟中硝态氮(NO_3~--N)和总磷(TP)的负荷过程进行了模拟,结果表明,模型估算结果和实测污染物负荷过程非常接近,Nash-Suttcliffe模拟效率系数分别为0.963和0.945,表明该模型具有较高的可靠性.  相似文献   
992.
基于仿真的新建污水处理厂工艺参数调试   总被引:1,自引:0,他引:1  
基于ASM2D模型建立了上海某新建污水厂倒置AAO流程的数学模型,并采用该厂进、出水设计数据对模型进行校正,其中,ASM2D各组分浓度分布参考文献值.同时,通过仿真计算研究了不同温度下进水流量、污泥回流比、混合液回流比及进水流量分配比对出水总化学需氧量(TCOD)、氨氮(SNH3)、总氮(TN)、总磷(TP)及总悬浮颗粒物(TSS)的影响.结果表明,研究获得的定性和定量两方面结果可供该厂在工艺参数调试中作参考.计算机仿真技术在新建污水厂工艺参数调试中的应用可以减少调试时间,降低调试费用,取得良好的经济效益与环境效益.  相似文献   
993.
武器装备验证环境因素确定模型及其应用研究   总被引:2,自引:0,他引:2  
从系统的角度,分析了与武器装备环境紧密相联的4个因素,从武器装备的产品分解结构、环境分解结构、功能分解结构、状态集构建了武器装备系统、分系统、部件的试验验证环境因素确定模型,分析了模型的应用,给出了模型的工作流程。描述了基于上述模型的信息管理系统的构建思路与功能。  相似文献   
994.
Introduction: Reducing the severity of crashes is a top priority for safety researchers due to its impact on saving human lives. Because of safety concerns posed by large trucks and the high rate of fatal large truck-involved crashes, an exploration into large truck-involved crashes could help determine factors that are influential in crash severity. The current study focuses on large truck-involved crashes to predict influencing factors on crash injury severity. Method: Two techniques have been utilized: Random Parameter Binary Logit (RPBL) and Support Vector Machine (SVM). Models have been developed to estimate: (1) multivehicle (MV) truck-involved crashes, in which large truck drivers are at fault, (2) MV track-involved crashes, in which large truck drivers are not at fault and (3) and single-vehicle (SV) large truck crashes. Results: Fatigue and deviation to the left were found as the most important contributing factors that lead to fatal crashes when the large truck-driver is at fault. Outcomes show that there are differences among significant factors between RPBL and SVM. For instance, unsafe lane-changing was significant in all three categories in RPBL, but only SV large truck crashes in SVM. Conclusions: The outcomes showed the importance of the complementary approaches to incorporate both parametric RPBL and non-parametric SVM to identify the main contributing factors affecting the severity of large truck-involved crashes. Also, the results highlighted the importance of categorization based on the at-fault party. Practical Applications: Unrealistic schedules and expectations of trucking companies can cause excessive stress for the large truck drivers, which could leads to further neglect of their fatigue. Enacting and enforcing comprehensive regulations regarding large truck drivers’ working schedules and direct and constant surveillance by authorities would significantly decrease large truck-involved crashes.  相似文献   
995.
IntroductionRoadway departure (RwD) crashes, comprising run-off-road (ROR) and cross-median/centerline head-on collisions, are one of the most lethal crash types. According to the FHWA, between 2015 and 2017, an average of 52 percent of motor vehicle traffic fatalities occurred each year due to roadway departure crashes. An avoidance maneuver, inattention or fatigue, or traveling too fast with respect to weather or geometric road conditions are among the most common reasons a driver leaves the travel lane. Roadway and roadside geometric design features such as clear zones play a significant role in whether human error results in a crash. Method: In this paper, we used mixed-logit models to investigate the contributing factors on injury severity of single-vehicle ROR crashes. To that end, we obtained five years' (2010–2014) of crash data related to roadway departures (i.e., overturn and fixed-object crashes) from the Federal Highway Administration's Highway Safety Information System Database. Results: The results indicate that factors such as driver conditions (e.g., age), environmental conditions (e.g., weather conditions), roadway geometric design features (e.g., shoulder width), and vehicle conditions significantly contributed to the severity of ROR crashes. Conclusions: Our results provide valuable information for traffic design and management agencies to improve roadside design policies and implementing appropriately forgiving roadsides for errant vehicles. Practical applications: Our results show that increasing shoulder width and keeping fences at the road can reduce ROR crash severity significantly. Also, increasing road friction by innovative materials and raising awareness campaigns for careful driving at daylight can decrease the ROR crash severity.  相似文献   
996.
Introduction: Cycling is one of the main forms of transportation in Denmark. However, while the number of traffic crash fatalities in the country has decreased over the past decade, the frequency of cyclists killed or seriously injured has increased. The high rate of serious injuries and fatalities associated with cycling emphasizes the increasing need for mitigating the severity of such crashes. Method: This study conducted an in-depth analysis of cyclist injury severity resulting from single and multiparty bicycle-involved crashes. Detailed information was collected using self-reporting data undertaken in Denmark for a 12-month period between 1 November 2012 and 31 October 2013. Separate multilevel logistic (MLL) regression models were applied to estimate cyclist injury severity for single and multiparty crashes. The goodness-of-fit measures favored the MLL models over the standard logistic models, capturing the intercorrelation among bicycle crashes that occurred in the same geographical area. Results: The results also showed that single bicycle-involved crashes resulted in more serious outcomes when compared to multiparty crashes. For both single and multiparty bicycle crash categories, non-urban areas were associated with more serious injury outcomes. For the single crashes, wet surface condition, autumn and summer seasons, evening and night periods, non-adverse weather conditions, cyclists aged between 45 and 64 years, male sex, riding for the purpose of work or educational activities, and bicycles with light turned-off were associated with severe injuries. For the multiparty crashes, intersections, bicycle paths, non-winter season, not being employed or retired, lower personal car ownership, and race bicycles were directly related to severe injury consequences. Practical Applications: The findings of this study demonstrated that the best way to promote cycling safety is the combination of improving the design and maintenance of cycling facilities, encouraging safe cycling behavior, and intensifying enforcement efforts.  相似文献   
997.
Introduction: The phenomenon that construction workers do not use personal protective equipment (PPE) is a major reason for the high occurrence frequency of accidents in the construction industry. However, little efforts have been made to quantitatively examine the factors influencing construction workers’ acceptance of PPE. Method: In the current study, a PPE acceptance model for construction workers (PAMCW) was proposed to address the noted need. The PAMCW incorporates the technology acceptance model, theory of planned behavior, risk perception, and safety climate for explaining construction worker acceptance of PPE. 413 construction workers participated in this study to fill out a structured questionnaire. The PAMCW was analyzed using structural equation modeling. Results: Results provide evidence of the applicability of the technology acceptance model and theory of planned behavior to the PPE acceptance among construction workers. The positive influence of safety climate and risk perception-severity on attitude toward using PPE was significant. Safety climate positively influences perceived usefulness. Risk perception-worry and unsafe was found to positively affect intention to use PPE. Practical Applications: Practical suggestions for increasing construction workers’ use of PPE are also discussed.  相似文献   
998.
为减少专家主观判断对软岩隧道塌方事故评估的影响,提出1种从事故出发逆推分析事故致灾因素耦合机制的方法。基于142个隧道施工塌方事故案例,系统总结隧道塌方事故致灾因素,对塌方事故的致灾因素出现频率进行排序;从致灾因素之间关联耦合关系出发,结合隧道施工塌方事故的多因素耦合致灾机理,研究隧道塌方事故产生过程的多因素耦合路径和耦合过程;采用N-K耦合模型开展隧道塌方事故多因素耦合路径下的耦合关联值评估,并对耦合关联值进行排序从而找到控制塌方事故发生的致灾因素组合。结果表明:除4个主要致灾因素的全耦合外,围岩岩性-降雨-地下水的耦合关联值是洞身段中最大值,为17.79%,围岩岩性-偏压-地下水的耦合关联值是洞口段中最大值,为24.02%;洞身段的围岩岩性-地下水因素和洞口段的围岩岩性-偏压因素分别对耦合关联值大小起决定影响;耦合关联值不具备叠加效应,2因素耦合关联值可能比3因素耦合关联值更大。研究结果可为提高隧道事故分析与安全防控提供科学依据。  相似文献   
999.
Occupational exposure limits (OELs) developed by authorities play a key role in the implementation of programs to protect workers against hazardous chemicals. Unfortunately, many hazardous substances do not have OELs or the OEL could be outdated. To assure the health of the workers, it is therefore useful for companies to develop corporate OELs. An inhouse strategy will be presented hereafter. Expertise in toxicology, industrial hygiene, and occupational health should be available within the company and clear selection criteria for substances are needed. A corporate OEL is only developed for hazardous substances (e.g., carcinogenic or reprotoxic) with a high potential for worker exposure when an appropriate national OEL or threshold limit value is not available. The methodology to calculate corporate OELs is based on the existing methods for national or community OELs and also on the guidance from the European Union's (EU) regulation on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). For carcinogenic substances with a nonthreshold mode of action, there is always a residual chance that a cancer develops even when the exposure of workers is low. To establish an OEL for these substances, the “German traffic light model” is recommended. It is pragmatic, defines an unacceptable, tolerable, and acceptable risk level when workers are exposed to these substances, and determines risk management for exposure reduction. Overall, the professional practice to develop OELs is a good example of corporate leadership to proactively protect the health of workers.  相似文献   
1000.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号