首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   73篇
  国内免费   276篇
安全科学   44篇
废物处理   34篇
环保管理   13篇
综合类   307篇
基础理论   100篇
污染及防治   167篇
评价与监测   28篇
社会与环境   3篇
  2024年   3篇
  2023年   6篇
  2022年   18篇
  2021年   20篇
  2020年   21篇
  2019年   25篇
  2018年   16篇
  2017年   27篇
  2016年   39篇
  2015年   35篇
  2014年   20篇
  2013年   72篇
  2012年   73篇
  2011年   42篇
  2010年   36篇
  2009年   41篇
  2008年   30篇
  2007年   30篇
  2006年   36篇
  2005年   16篇
  2004年   17篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   8篇
  1999年   2篇
  1998年   8篇
  1997年   6篇
  1996年   9篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
排序方式: 共有696条查询结果,搜索用时 15 毫秒
581.
一种纳米级不定形碳对水中四环素的吸附研究   总被引:1,自引:0,他引:1  
研究了一种新型纳米级不定形碳对水中四环素的吸附作用.结果表明,在Li-Na-K碳酸盐的共熔体系中生成的碳粉对四环素表现出了良好的吸附性能.在298K下,碳粉对四环素的吸附行为更符合拟二级动力学模型和Freundlich吸附等温线,最大吸附容量达到127.76 mg·g-1.热力学计算结果表明,吸附过程是吸热的、自发的,以化学吸附为主.吸附行为表现出明显的p H依赖性,当溶液的起始p H在2~11,p H为4时碳粉对四环素的吸附量最大.溶液中的阳离子对吸附有一定的影响,但影响不大,随着阳离子浓度的增加,吸附量在一定程度上逐渐减小.离子交换作用可能是吸附的原理之一,还可能同时存在静电引力、氢键等作用.分别使用0.25 mol·L-1的Ca Cl2和Na Cl溶液进行解吸实验,解吸效率在7.42%~25%,解吸效率较低,说明吸附的化学作用较强.  相似文献   
582.
PCP was, and in some countries still is, one of the most frequently used fungicides and pesticides, specially in wood preservation. The extensive use is correlated with contamination of water and soil and it is detected in several compartments of the food chain.

Some Micromycetes are able to adsorb and degrade PCP, with two mechanisms involved: biosorption (including both adsorption and absorption) and biodegradation.

Our work is focused on the biosorption alone and biodegradation‐biosorption of PCP by respectively denatured and living R.arrhizus and C.elegans fungi.

Living fungi are cultivated in batch system and denaturation is obtained by drying (70°C) and grinding the fungi to a calibrated powder (200–400 μm). Kinetic studies are performed with 10 mg/1 PCP initial concentration. Adsorption capacity is measured at equilibrium concentration as high as about 400 mg/1 PCP.

The results show that: PCP adsorption, for the two fungi, follows a two steps process. R. arrhizus dead and living biomasses are able to bind respectively, 75 and 55% of a 10 mg/1 PCP initial concentration in 1 hour contact time and then 75 and 100% in 96 hours. For C.elegans, 70 and 28% in 1 hour and in 96 hours 70 and 90%, respectively.

The PCP binding by living fungi is higher than non living ones, but with a slower rate.

The maximum PCP adsorption capacity is about 24 mg/g of R.arrhizus dried biomasses and 16 mg/g for C.elegans ones, in 48 hours contact time. Isotherm curves follow the Langmuir model.

Desorption studies with methanol (to reuse biomasses) shows that it is a rapid phenomenon (about 100% in 24 hours for the two fungi).

An industrial and economical process to depollute contaminated water by PCP is possible by using cheap fungal by‐products from fermentation industries.  相似文献   
583.
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption–desorption processes. Four soils from Melozal (35° 43′ S; 71° 41′ W), Parral (36° 08′ S; 71° 52′ W), San Carlos (36° 24′ S; 71° 57′ W), and Panimavida (35° 44′ S; 71° 24′ W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g?1) and were related to soil pH. Molinate showed Kd values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g?1and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its Kd values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g?1. MCPA Kd ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g?1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.  相似文献   
584.
沸石分子筛和活性炭吸附/脱附甲苯性能对比   总被引:13,自引:0,他引:13  
考察了甲苯在NaY型沸石分子筛(简写为NaY)、13X型沸石分子筛(简写为13X)、Hβ型沸石分子筛(简写为Hβ)、MCM-22型沸石分子筛(简写为MCM-22)和ZSM-5型沸石分子筛(简写为ZSM-5)上的吸附/脱附性能,同时与椰壳活性炭(AC)的吸附/脱附性能进行对比.结果表明,各吸附剂对甲苯的平衡吸附量大小依次为:AC>NaY>Hβ>13X>MCM-22>ZSM-5,甲苯从吸附剂表面脱附难易程度依次为:AC>NaY、13X>Hβ>MCM-22>ZSM-5>ZSM-5对甲苯的平衡吸附量和吸附强度都最小,这是由于甲苯无法进入ZSM-5的内部孔道造成的;在低甲苯质量浓度(<1 000 mg/m3)时.NaY平衡吸附量超过AC,因此NaY更适合应用在低浓度有机废气吸附治理中,Langmuir吸附方程比Freundlich吸附方程更符合沸石分子筛吸附甲苯的行为.  相似文献   
585.
造粒流化床颗粒污泥对溶解性有机物的吸附机理研究   总被引:2,自引:0,他引:2  
造粒流化床对污染物的去除是由混凝沉淀和物理吸附协同作用完成的,然而对于溶解性污染物,混凝沉淀的效果不明显,根据作者的实验分析,物理吸附在溶解性污染的去除中发挥了重要的作用。作者利用静态实验的方法对流化床颗粒对葡萄糖的吸附和扩散传质过程进行了分析,并采用Langmuir方程、Freudlich方程和Weber-Morris颗粒扩散模型对实验数据进行了拟合。结果表明,颗粒对葡萄糖的吸附等温过程与Langmuir方程有很好的吻合性;颗粒对葡萄糖的吸附速度与颗粒内部的扩散过程有很好的相关性。  相似文献   
586.
以玉米淀粉为原料,采用先醚化后交联改性工艺合成了交联羧甲基玉米淀粉吸附剂。在单因素试验的基础上,采用Box-Benhnken的中心组合试验设计及响应面分析法,研究了交联羧甲基玉米淀粉吸附剂用量、吸附时间和pH值3因素对水溶液中铅离子吸附效果的影响,得出了吸附剂对铅离子吸附效果的回归模型。结果表明,最佳吸附工艺参数为吸附剂用量0.22 g,pH值为6.6,吸附时间32.9 min,交联羧甲基玉米淀粉对铅离子吸附容量可达44.72 mg/g,铅离子去除率达到98.38%。常温下吸附动力学模型符合Freundlich等温式Q=0.4152C0.9894。采用0.9 mol/L盐酸溶液作为解析液,铅离子回收率可达97.55%。  相似文献   
587.
Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24 h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg−1. Sorption and desorption studies were conducted on the <2.0 mm material and three size fractions within the <2.0 mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ?2 h). The effect of DOC was minimal at <150 mg DOC L−1, but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L−1. The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0 mm) are ∼44 g kg−1 and >75 g kg−1, respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg-l, but increased (<9% of the P sorbed) at cumulative P loads >70 g kg−1. The <2.0 mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.  相似文献   
588.
广东省不同母质赤红壤磷的吸附与解吸   总被引:3,自引:0,他引:3  
研究了广东省4种不同母质赤红壤磷的吸附与解吸特征,结果表明,4种不同母质赤红壤等温吸附方程(Langmuir方程,Freundilch方程和Temkin方程)的拟合结果都达到了极显著的水平。土训吸附磷量由大到小的顺序为:玄武岩>页岩>花岗岩>砂页岩。赤红壤对磷的解吸顺序为:玄武岩<页岩<花岗岩<砂页岩,说明粘粒较少的母质土壤对磷的吸附力也小,因此,更容量解吸。提高土壤有机质的含量,可以改善土训的供磷性能。  相似文献   
589.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   
590.
Volatile organic compounds at swine facilities: A critical review   总被引:3,自引:0,他引:3  
Ni JQ  Robarge WP  Xiao C  Heber AJ 《Chemosphere》2012,89(7):769-788
Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions.Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples.The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts.Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks.Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5 mg d−1 kg−1 pig at swine finishing barns and from 2.3 to 45.2 g d−1 m−2 at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates.Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号