首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4363篇
  免费   676篇
  国内免费   1957篇
安全科学   660篇
废物处理   196篇
环保管理   516篇
综合类   3816篇
基础理论   604篇
污染及防治   556篇
评价与监测   297篇
社会与环境   278篇
灾害及防治   73篇
  2024年   29篇
  2023年   105篇
  2022年   215篇
  2021年   291篇
  2020年   276篇
  2019年   253篇
  2018年   267篇
  2017年   294篇
  2016年   323篇
  2015年   335篇
  2014年   357篇
  2013年   465篇
  2012年   489篇
  2011年   510篇
  2010年   326篇
  2009年   298篇
  2008年   209篇
  2007年   291篇
  2006年   253篇
  2005年   199篇
  2004年   165篇
  2003年   174篇
  2002年   143篇
  2001年   126篇
  2000年   107篇
  1999年   101篇
  1998年   67篇
  1997年   62篇
  1996年   54篇
  1995年   51篇
  1994年   47篇
  1993年   35篇
  1992年   18篇
  1991年   18篇
  1990年   11篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   7篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有6996条查询结果,搜索用时 273 毫秒
521.
中试用内循环厌氧反应器处理制浆造纸厂的洗草废水,并探讨内循环系统的循环状况。试验表明,洗草水不适合进行深度厌氧处理,宜进行水解酸化。由于洗草废水的有机物浓度低,产气量小,反应器内循环系统仅产生了不连续的提升,液体提升量与产气量的比值在0.08~0.36,下降管中产生了间歇性回流,液体的流量达到了518.4~725.1 L/h。  相似文献   
522.
采用高速摄影技术,考察了液化四氟乙烷发生小孔泄漏时,其水平泄漏和垂直泄漏的初始云团演化行为、泄漏的质量流率、喷射速度和喷射角,并与理论计算公式进行了对比。结果表明:水平喷射两相云团尾部出现涡流,涡流大幅加快了云团向空气中扩散的速率;垂直喷射的两相云团在地面形成液池,液池大幅增加了液化气体向空气中蒸发的速率。水平泄漏试验的喷射角与容器内超压变化规律相似,泄放初期喷射角逐渐增大,经历一段平坦期,到泄放末期喷射角减小。水平泄漏和垂直泄漏的初始喷射速度分别为25 m/s和20 m/s,与理论值26.6 m/s基本吻合。水平泄漏的质量流率的试验值和理论值分别为0.0598 kg/s和0.0684 kg/s,垂直泄漏的分别为0.0472 kg/s和0.059 6 kg/s,结果对比基本吻合,推荐的泄漏质量流率和小孔喷射速度公式可以用于液化四氟乙烷小孔泄漏。  相似文献   
523.
针对新建矿井地勘瓦斯含量测值偏低和井下实测瓦斯含量较少的特点,结合工程和科研实践,提出了利用大量的工作面瓦斯涌出量反演煤层原始瓦斯含量技术和基于探采对比的煤层瓦斯含量预测方法。以邹庄井田32煤层为研究对象,在考虑瓦斯抽采情况下计算3204工作面瓦斯涌出量,并反演该工作面煤层原始瓦斯含量。通过对比采掘过程中获得的瓦斯含量和地勘瓦斯含量,得到不同钻孔深度时的地勘瓦斯含量修正系数,并采用瓦斯地质研究方法对32煤层分3个单元进行瓦斯含量预测。结果表明:32煤层瓦斯含量整体呈现"东部大于西部,北部大于南部"的规律,与临近矿井具有相似的瓦斯赋存规律。这表明利用探采对比的方法预测煤层瓦斯含量是可靠的。  相似文献   
524.
为研究公路连续长坡路段驾驶员心率与曲线半径的关系,提高行车安全,选取9名驾驶员进行实际道路试验.用多导生理记录仪采集驾驶员的心率数据,按上、下坡方向将试验路段的每个曲线划分为7个位置,分别对上、下坡方向每个位置驾驶员的心率增长率和曲线半径的关系进行回归分析,建立相应的模型,并对每个位置的模型进行分析,提出合理的曲线半径设置建议.综合上、下坡方向各位置的曲线半径研究结论提出合理的曲线半径取值建议,公路连续长坡路段曲线半径在r≥900 m和200 m≤r≤300 m内取值.  相似文献   
525.
根据多孔介质渗流理论,利用Fluent软件,分别对采空区瓦斯在整个采空区均匀涌出、上邻近层及底板遗煤涌出2种情况下采空区瓦斯分布规律进行了数值模拟.结果表明:采空区瓦斯为上邻近层及底板遗煤处涌出时,沿走向方向,靠近上邻近层及底板处高体积分数瓦斯距离工作面较近;沿竖直方向,瓦斯体积分数分布呈钩状,靠近瓦斯涌出源处瓦斯体积分数最高;整个采空区均匀涌出时采空区瓦斯体积分数分布与上邻近层及底板遗煤涌出时有很大差别.因此,为了得到更符合实际情况的瓦斯分布规律,数值模拟时应按照现场实际的瓦斯涌出源位置建立模型.  相似文献   
526.
为了研究船舶载运煤炭甲烷释放规律,基于Fick扩散定律建立了货舱甲烷体积分数计算模型,分析了不同扩散系数条件下甲烷释放量与时间的关系,确定了空隙系数的取值范围,通过对某船舶煤炭运输过程中甲烷体积分数随船实测对模型进行了验证.结果表明,货舱甲烷体积分数随运输时间增加而增加,扩散系数为1.0×10-8 cm2/s时,甲烷释放量达到极大值;煤炭的空隙系数基本在0.53~ 0.57 m3/t之间.当煤炭极限甲烷解吸量为1.6 ~ 3.83 m3/t时,货舱甲烷最高体积分数在0.53% ~ 1.22%,5个货舱中4个货舱的甲烷释放量与理论计算相吻合,1个货舱的最大甲烷释放量高出理论计算量6%,船运煤炭过程中的甲烷释放计算模型与实测结果较为吻合.对于甲烷体积分数超限的货舱,及时通风可使甲烷体积分数迅速降低,有效地解决船运煤炭过程中甲烷体积分数超限的问题.  相似文献   
527.
轨道交通的高效低污染特征备受关注,以广佛二期地铁为研究对象,测算广佛二期地铁的能源消费量,以及CO2、CH4、N2O等温室气体(Greenhouse Gases,GHGs)排放量;再基于生命周期理论,采用量化方法对比广佛二期地铁与出租车、私人载客汽车、公交车、私人摩托车4种客运交通工具的能源利用效率、能源强度、碳排放强度;最后,分析广佛二期地铁对佛山市交通行业能耗和GHGs排放的影响.结果表明,广佛二期地铁近期能源消费量为4 562.95 t标准煤,CO2排放量为12 651.57 t,CH4排放量为0.152 t,N2O排放量为0.201 t.与燃油机动车相比,广佛二期地铁具有更高的能源利用效率,同时具有较高的节能减排潜力.研究表明,广佛二期地铁的开通不但是缓解佛山市机动车辆增长的重要方式,而且对城市交通节能减排具有重要意义.  相似文献   
528.
针对影响油气管道安全运营的落石冲击问题,基于弹塑性力学、Cowper-Symonds本构模型和有限元方法,建立了球形落石冲击油气管道的计算模型,对管道动态响应过程进行了数值模拟。对冲击速度、落石半径、管道内压力和落石冲击位置进行了参数敏感性分析,研究了各参数对管道冲击变形的影响规律。结果表明:落石的冲击能量主要用于管道塑性变形;冲击过程中,落石与管道的接触区域由初始的椭圆斑逐渐变成了椭圆环;管道塑性变形随着冲击速度和落石半径的增大而增大,随内压和落石偏移度的增大而减小。该研究工作为油气管道的安全评价及防护工程的设计提供了参考依据,对保障油气安全运输具有重要的工程意义。  相似文献   
529.
为快速、准确预测回采工作面瓦斯涌出量,基于投影降维思想,建立一种遗传算法(GA)投影寻踪回归预测方法。选取煤层瓦斯原始含量、埋藏深度、煤层厚度、煤层倾角、工作面长度、推进速度、采出率、临近层瓦斯含量、临近层厚度、临近层层间距、岩层岩性、开采深度作为评价因子,对某矿15个学习样本进行训练,建立GA投影寻踪回归预测模型。利用该矿3个实测样本对模型进行检验,并与主成分分析和BP神经网络方法结果进行对比。研究表明:利用GA投影寻踪回归预测回采工作面瓦斯涌出量,平均误差为3.43%,最大误差为5.7%,精度优于其他2种方法。  相似文献   
530.
为研究前车突然切入对驾驶人生理负荷的影响,利用MP150生理监测系统对22名被试进行虚拟驾驶试验。采集记录前车突然切入时被试的生理参数。研究驾驶人心率增长率和心率变异性(HRV)指标与车速、应激距离之间的关系。结果表明:自车速度为100 km/h时,随着前车切入距离从55.6 m减小到27.8 m,被试的平均心率增长率从16.21%增大到23.27%,HRV参数低频(LF)值也呈现下降趋势。前车切入距离一定,随着自车车速从60 km/h增加到120 km/h,被试的平均心率增长率存在显著性差异,平均从13.05%上升到21.85%。差异性检验结果表明,前车切入距离和自车速度发生变化时驾驶人的生理负荷变化趋势一致,但自车速度因素对驾驶人生理负荷的影响程度高于切入距离因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号