全文获取类型
收费全文 | 203篇 |
免费 | 26篇 |
国内免费 | 143篇 |
专业分类
安全科学 | 17篇 |
废物处理 | 14篇 |
环保管理 | 14篇 |
综合类 | 196篇 |
基础理论 | 48篇 |
污染及防治 | 69篇 |
评价与监测 | 14篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 3篇 |
2021年 | 8篇 |
2020年 | 10篇 |
2019年 | 7篇 |
2018年 | 13篇 |
2017年 | 8篇 |
2016年 | 12篇 |
2015年 | 11篇 |
2014年 | 15篇 |
2013年 | 14篇 |
2012年 | 23篇 |
2011年 | 16篇 |
2010年 | 24篇 |
2009年 | 28篇 |
2008年 | 28篇 |
2007年 | 38篇 |
2006年 | 38篇 |
2005年 | 19篇 |
2004年 | 9篇 |
2003年 | 14篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1986年 | 1篇 |
排序方式: 共有372条查询结果,搜索用时 0 毫秒
281.
甲醛致中华卵索线虫DNA损伤作用的研究 总被引:1,自引:0,他引:1
为了探讨甲醛致线虫DNA-蛋白质交联(DNA-protein crosslinks,DPC)和DNA断裂(DNA strand breakage,DSB)的作用,以中华卵索线虫(Ovomermis sinensis)为材料,经活体染毒后,采用KCl-SDS沉淀法和单细胞凝胶电泳法来检测液态甲醛染毒后线虫提取细胞中DNA-蛋白质交联物的含量及DNA的断裂效应.KCl-SDS沉淀法的结果表明,低浓度(5、25、125μmol·L-1)的液态甲醛不能引起DNA-蛋白质的交联(p>0.05),较高浓度(625μmol·L-1)的甲醛可以引起明显的DNA-蛋白质的交联作用(p<0.05)而单细胞凝胶电泳的结果则显示甲醛在低浓度(5、25μmol·L-1)时可以引起DNA链的断裂(p<0.01),在较高浓度(125、625μmol·L-1)时可以引起交联作用(p<0.05).研究结果表明,甲醛在较高浓度时可以导致明显的DNA-蛋白质交联作用,而在小于25μmol·L-1时以DNA断裂作用为主. 相似文献
282.
催化氧化法处理含甲醛毒性有机废水的工程试验 总被引:16,自引:1,他引:16
含甲醛废水属毒性有机废水 ,不能直接用生物法进行处理。本研究以广州珠江钢琴厂洗胶过程含甲醛废水处理工程为背景 ,依据废水的成分组成 ,设计了Fenton试剂催化氧化与活性炭过滤的组合工艺 ,经正交实验及单因素实验确定了各操作参数 ,再通过工程规模反应器进行检验 ,含甲醛的毒性有机废水经处理后其CODCr及甲醛的去除率分别达到 76 %和 96 % ,色度的去除率为 99%以上 ,然后简要分析实际工程处理过程中Fenton试剂催化氧化洗胶废水的相关影响因素 相似文献
283.
活性炭表面酸性含氧官能团对吸附甲醛的影响 总被引:1,自引:0,他引:1
利用Bothem滴定法测定了化学浸渍处理的活性炭表面酸性含氧官能团浓度,研究表面酸性含氧官能团对甲醛吸附的效应。结果表明,HNO3浸渍处理能有效增大活性炭表面的羧基、酚羟基和内酯基浓度;H2O2浸渍处理主要增大了活性炭表面的酚羟基浓度;随着NaOH浓度的增大,活性炭表面的酚羟基、内酯基和羰基浓度大致呈先增大后减小的趋势,这是由于NaOH的化学清洗作用和酸碱中和反应所致;HNO3浸渍处理的活性炭表面的酸性含氧官能团浓度显著超过NaOH、H2O2浸渍处理的活性炭,而30%(质量分数)NaOH浸渍处理的活性炭和30%(体积分数)H2O2浸渍处理的活性炭吸附甲醛的饱和时间比HNO3浸渍处理的活性炭吸附甲醛最大饱和时间分别多4.0、1.5 h,说明酚羟基能够显著影响活性炭吸附甲醛的效果。 相似文献
284.
我国城市当前普遍存在室外大气PM_(2.5)与室内甲醛(FA)联合污染状况,二者均被报道在单独暴露下可以导致肺损伤并诱导和诱发哮喘的急性发作,但其联合污染的具体效应,以及分子机制目前尚不清楚。为探究PM_(2.5)和/或甲醛暴露对小鼠的肺损伤及其可能的机制,分别将雄性Balb/c小鼠分为以下6组:对照组,AZD8055组,PM_(2.5)组,FA组,PM_(2.5)+FA组,PM_(2.5)+FA+AZD8055组。染毒结束后,观察肺组织病理学变化;检测肺组织氧化损伤,活性氧(reactive oxygen species,ROS),还原型谷胱甘肽(glutathione,GSH)和丙二醛(malondialdehyde,MDA)的含量,DNA损伤,DNA-蛋白质交联(DNA-protein crosslink,DPC)系数和8羟基脱氧鸟苷(8-OH-d G)的含量,以及细胞凋亡、半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)的含量。结果表明,当吸入气态甲醛浓度为3 mg·m-3,气道滴注PM_(2.5)浓度为2.5 mg·m L-1时,肺组织出现不同程度的支气管重塑和炎症细胞浸润。ROS显著上升,GSH显著下降,DPC、8-OH-d G以及Caspase-3都显著上升。添加AZD8055后,肺组织损伤效应更加显著。PM_(2.5)复合甲醛的暴露导致小鼠肺损伤具有协同作用,氧化应激及其下游的DNA损伤可能是甲醛联合PM_(2.5)致小鼠肺损伤的一种重要机制。 相似文献
285.
为了对市售被动式室内空气净化产品的净化效果有深刻具体的认识,选择销售份额较大的4种甲醛清除剂进行实验舱测试。结果表明:(1)甲醛清除剂对甲醛的净化过程均随时间呈对数衰减,可见甲醛浓度越高,甲醛清除剂对甲醛的净化速率越快。(2)不同的甲醛清除剂的净化速率都有一定差异,即使24h净化率均在90%以上的甲醛清除剂,净化速率也不同,净化率达到90%以上所需要的实际时间可相差数倍。(3)《室内空气净化功能涂覆材料净化性能》(JCT 1074—2008)中对甲醛清除剂根据其对污染物24h的净化率进行了分级,消费者可据此对净化产品的优劣有初步判断。而净化速率和饱和净化量则可在消费者购买甲醛清除剂时起到更具体和明确的指导作用,并可在消费者具体使用时,根据饱和净化量,对甲醛清除剂用量和甲醛清除剂持续作用时间有初步的判断。 相似文献
286.
电凝并式空气净化单元对颗粒物和甲醛净化效果的实验 总被引:2,自引:0,他引:2
研究一种新型电凝并式空气净化单元对室内空气中颗粒物和甲醛的净化效果.实验结果表明,高压高频(HV-HF)电凝并装置能促使小粒子相互凝并为较大的电中性的粒子团,这些具有较高比表面积的电中性粒子团进入室内空间,能继续粘附空气中及物体表面上的颗粒,形成更大的粒子团,从而易于被净化单元中的中效过滤器捕集,而且该净化单元对于大粒子(粒径>0.7μm)浓度较高的场所净化效果更加明显.另外,室内空气中吸附在颗粒物表面的甲醛也随之被高效去除.该净化单元的投入使用,起到了提高过滤效率、去除气溶胶小粒子、降低能耗、进一步改善室内空气品质等多重功效. 相似文献
287.
为了消除甲醛气体对人类的危害,对甲醛气体的光催化降解行为进行了研究。采用沉淀-胶溶法制得了具可见光活性的纳米TiO2溶胶,然后将其负载于经过预处理的泡沫镍板上,置于自置的光催化反应器中,考察了在可见光照射下对密闭空间里面一定浓度的甲醛气体的降解情况。采用乙酰丙酮分光光度法,在最佳的检测条件下检测气相中甲醛气体经不同光照时间后的浓度。研究发现,负载了氮掺杂改性的TiO2的泡沫镍板在可见光照射下能够有效降解气相中的甲醛,反应240 min后对甲醛气体的降解率为93%;而同样条件下反应器中只有处理过的泡沫镍板时,甲醛气体浓度基本保持不变。 相似文献
288.
利用脉冲放电等离子体-催化耦合技术,进行模拟室内空气循环降解甲醛的实验,对比了3种净化方式(紫外光催化、等离子体单独作用与等离子体-催化耦合)的甲醛降解效果,并考察了中心电极的极性、催化剂活性炭板与中心电极的距离对甲醛降解效果的影响.结果表明,相对单独的紫外光催化和等离子体作用而言,等离子体-催化耦合多重功效结合的甲醛降解效果更好,降解速率也更快;中心电极为正极的电场的甲醛降解效果优于中心电极为负极的电场;随着催化剂活性炭板与中心电极距离的不断扩大,直至板移动至电场外部的过程中,甲醛的降解率表现为先上升后下降的趋势,催化剂活性炭板与中心电极的距离存在一个最佳值,本研究的最佳距离为15mm. 相似文献
289.
通过对乙酰丙酮荧光分光光度法测定空气中甲醛的试验条件用单因素改变法与单纯形优化法试验结果进行对照,确定了测定空气中微量甲醛的最佳试验条件。该方法的最大激发波长为415nm,最大发射波长为508nm最低检测限为0.0034μg/ml。对空白值测定的标准偏差为0.0006μg/ml,相对偏差为5.6%。测定空气中甲醛的最低浓度为0.0057mg/m^3。 相似文献
290.
京津冀对流层甲醛的时空演变特征及其影响因素 总被引:1,自引:0,他引:1
依据2009—2016年OMI卫星反演的逐日数据,结合遥感图像处理技术和克里金插值法,对京津冀地区对流层甲醛柱浓度的时空特征及影响因素进行了分析.结果发现,2009—2016年8年间京津冀地区甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.01%,最大增长率出现于2009—2010年,为12.91%.8年间,甲醛柱浓度值具有波动性,最低值和最高值分别出现于2009年和2013年.研究区甲醛柱浓度季节变化表现为夏季值秋季值冬季值春季值,甲醛柱浓度月均值在每年的6月达到最高.甲醛柱浓度空间分布的低值区大多处于地势较高的京津冀地区西北部,高值区主要分布在京津冀地区南部平原.甲醛柱浓度变化不仅与自然因素的温度呈显著正相关,与气压呈显著负相关,还与社会经济因素中的煤炭消耗量、原油消耗量及工业增加值等呈正相关.京津冀地区甲醛柱浓度时空特征总体受当地自然和社会经济因素的综合影响. 相似文献