全文获取类型
收费全文 | 623篇 |
免费 | 61篇 |
国内免费 | 242篇 |
专业分类
安全科学 | 77篇 |
废物处理 | 9篇 |
环保管理 | 56篇 |
综合类 | 501篇 |
基础理论 | 104篇 |
污染及防治 | 72篇 |
评价与监测 | 52篇 |
社会与环境 | 41篇 |
灾害及防治 | 14篇 |
出版年
2024年 | 6篇 |
2023年 | 22篇 |
2022年 | 47篇 |
2021年 | 53篇 |
2020年 | 38篇 |
2019年 | 38篇 |
2018年 | 36篇 |
2017年 | 34篇 |
2016年 | 49篇 |
2015年 | 44篇 |
2014年 | 45篇 |
2013年 | 60篇 |
2012年 | 64篇 |
2011年 | 70篇 |
2010年 | 33篇 |
2009年 | 46篇 |
2008年 | 34篇 |
2007年 | 54篇 |
2006年 | 31篇 |
2005年 | 25篇 |
2004年 | 16篇 |
2003年 | 23篇 |
2002年 | 6篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1999年 | 10篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有926条查询结果,搜索用时 15 毫秒
81.
轻型汽车和汽车塑料配件涂装工艺过程的VOCs组分特征 总被引:5,自引:1,他引:5
通过采集和分析珠江三角洲(以下简称“珠三角”)地区轻型汽车和汽车塑料配件涂装工艺过程的VOCs样品,识别了上述两个行业不同涂装工艺过程的VOCs组分特征.结果表明:芳香烃(56.4%~75.5%)和OVOCs(11.0%~35.7%)为轻型汽车涂装工艺占比最大的两种VOCs组分;烷烃和烯炔烃在烘干工艺所占比重要高于喷涂工艺;1,2,4-三甲苯为电泳和面涂烘干工序的主要VOCs组分,间/对-二甲苯、乙酸丁酯、丙二醇甲醚醋酸酯分别为中涂、面涂和中涂烘干工序的主要VOCs组分.汽车塑料配件涂装工艺不同工序的VOCs组成相似,芳香烃(53.3%~58.3%)和OVOCs(40.9%~45.8%)为主要VOCs组成,甲苯、乙酸乙酯、乙酸丁酯等为主要VOCs组分.不同废气治理设施对汽车塑料配件涂装工艺VOCs组分会造成一定的影响.活性炭吸附治理设施处理后的主要VOCs组分为甲苯、乙苯和邻二甲苯等芳香烃组分,水喷淋治理设施则为乙酸乙酯、乙酸丁酯和丙二醇甲醚醋酸酯等OVOCs类组分.通过与其他研究对比,丙二醇甲醚醋酸酯作为原辅料和废气中的主要组分之一,在以往研究中并未识别出来,表明针对测试对象的原辅料与工艺信息的现场调研是开展VOCs组分特征及成分谱研究的基础工作,建议未来该方面研究加强对前期调研工作的重视.此外,建议关注行业发展趋势给VOCs成分谱研究带来的影响. 相似文献
82.
采用聚类分析、主成分分析及相关分析方法解析2015年太湖西岸入湖河流水质污染的时空分布特征及影响该区域水质的主要驱动因子。研究结果表明:时间上按污染程度将全年聚类为时段I(12月、1—3月)、时段II(11月、4—5月)和时段III(6—10月)3类;根据11项水质指标主成分分析提取3个主成分,可以解释75.49%的结果;时段I、时段II和时段III水质污染状况依次降低,空间上总体呈现出太湖西岸北部向南部递减的趋势;NH3-N、TN、Chl-a和SD是影响该水域水质的主要驱动因子。 相似文献
83.
针对铝穹顶储罐雷击问题,开展了回击后长持续时间雷电流分量作用下的铝合金板烧蚀损伤试验研究,分析了铝穹顶储罐损伤及油气燃爆风险。结果表明:当直流分量为164 C时,2 mm铝板发生穿孔,铝穹顶储罐存在雷击燃爆风险;当直流分量≤157 C时,未穿孔,背面温度最高为480℃,存在燃爆风险,铝穹顶储罐存在雷击燃爆风险;当直流分量196 C时,4 mm铝板发生穿孔;当直流分量为196 C时,6 mm铝板未发生穿孔,背面温升为125℃,小于205℃,铝穹顶储罐不存在雷击燃爆风险。 相似文献
84.
85.
基于成都市2017年10~12月逐时的“干”气溶胶散射系数和吸收系数观测数据,结合该时段同时次的能见度(V)、相对湿度(RH)以及二氧化氮(NO2)监测资料,利用“光学综合法”计算气溶胶散射吸湿增长因子,并探究了气溶胶散射吸湿增长因子单变量f(RH)模型的适用性及其改进方案.结果表明:幂函数、二次多项式、幂指函数形式的f(RH)模型在低RH条件下(RH<85%)均能很好地模拟气溶胶散射吸湿增长因子随RH的变化特征,但在高RH条件下(RH>85%)的模拟值会出现较大的偏差.黑碳质量浓度(CBC)是影响气溶胶散射吸湿增长因子的另一关键变量,二者之间满足非线性关系.以RH和CBC为自变量构建了气溶胶散射吸湿增长因子双变量f(RH,CBC)模型,模型计算值和实测值之间的决定系数R2为0.763,平均相对误差MRE为14.28%.双变量模型f(RH,CBC)的应用显著改善了气溶胶散射消光系数的模拟效果. 相似文献
86.
为进一步探究夏季太湖CDOM(有色溶解性有机质)光学特性在空间分布上的差异性与其来源的关系,对其紫外-可见吸收及三维荧光光谱特性进行了分析研究,在此基础上进一步分析了CDOM吸尘系数及其荧光组分(C1、C2、C3、C4)强度和各水质参数间的相关性.结合主成分分析法探讨了CDOM的来源以及与各参数指标[ρ(DOC)除外]之间的来源关系.结果表明:CDOM吸收系数α(355)、S值(光谱斜率)变化范围分别为3.27~8.27 m-1和0.011~0.021 nm-1;太湖西部、北部及南部湖区CDOM丰度较大,S值较低,受陆源输入的影响较为明显.CDOM的三维荧光光谱揭示其中含有两种类蛋白质组分C1和C2以及类腐殖质组分C3和C4,并且以类蛋白质组分为主.此外,大部分采样点的荧光指数(FI)为1.70~2.01,自生源指数(BIX)大于1,腐殖化指数(HIX)小于0.6,r(T/C)(荧光峰T与荧光峰C荧光强度比值)小于2,表明夏季太湖CDOM内源特性相对强烈.研究显示,除ρ(DOC)外,CDOM与其他水质参数在第一主成分上(贡献率为90.8%)均存在显著相关关系,说明各水质参数的来源存在相似性,并且受生物自生源影响更为显著. 相似文献
87.
于2002年1~7月份在抚顺市区四个点位采集了环境空气中的可吸入颗粒物样品,经分析后获得了可吸入颗粒物组分的时间分布和空间分布特征,即采暖期PM10样品中有机碳(OC)、元素碳(EC)的绝对含量和相对含量均高于非采暖期,工业区PM10样品中的Fe、Zn、Pb的绝对含量和相对含量均明显高于其它点位,反映了其工业区的特点。 相似文献
88.
89.
对研究水质的一种多元统计方法——主成分分析法做了详细介绍,并对主成分分析法在河流、地下水、矿区、湖泊水质评价中的应用进行了综述,简要分析了主成分分析法在水环境质量评价中尚有不足之处。 相似文献
90.
对南京北郊2018年9月~2019年9月PM2.5中有机组分的吸光性质进行了研究,并利用PM2.5化学组成及主成分分析法分析该地区吸光性有机碳(棕碳,brown carbon,BrC)的主要来源.结果表明,水溶性有机碳(water-soluble organic carbon,WSOC)和甲醇可提取有机碳(methanol extractable organic carbon,MEOC)在365 nm处光吸收系数(Abs365,w和Abs365,m)的平均值分别为(3.22±2.18)Mm-1和(7.69±4.93)Mm-1.Abs365,w和Abs365,m分别与WSOC(r=0.72,P<0.01)和MEOC(r=0.62,P=0.04)的质量浓度显著相关,均表现为冬高夏低,夜高昼低的时间变化特征.这可归结于冬季和夜间的气象特征(例如边界层高度降低和大气稳定度升高)、冬季一次源排放的增加以及夏季和白天更强的"光漂白作用".Abs365,m/Abs365,w的年均值(2.60±0.92)远高于MEOC/WSOC(质量浓度比值,1.37±0.30),表明MEOC中非水溶性组分的吸光作用更强,在BrC的吸光作用中占主导地位.WSOC、MEOC、Abs365,m和K+均未表现出强相关性(r<0.60),因此生物质燃烧不是该地区BrC的主要一次来源.WSOC和MEOC质量吸收效率(MAE365,w和MAE365,m)及其比值(MAE365,m/MAE365,w)的季节变化和Abs365相同.MEOC中非水溶性组分的MAE365[(4.10±5.15)m2·g-1]分别是MAE365,w和MAE365,m的6.0和2.9倍,支持BrC的吸光作用受非水溶性有机组分主导这一推断.和WSOC的埃氏吸收指数(ÅWSOC)相比,MEOC的埃氏吸收指数(ÅMEOC)随时间变化更显著,这可能与非水溶性吸光组分排放的季节变化有关.主成分分析结果显示,本研究PM2.5中有机组分的吸光作用主要来源于二次形成过程和人为活动相关的一次排放,而不是生物质燃烧. 相似文献