首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1068篇
  免费   63篇
  国内免费   194篇
安全科学   27篇
废物处理   3篇
环保管理   276篇
综合类   584篇
基础理论   96篇
污染及防治   69篇
评价与监测   71篇
社会与环境   142篇
灾害及防治   57篇
  2023年   16篇
  2022年   47篇
  2021年   34篇
  2020年   27篇
  2019年   18篇
  2018年   33篇
  2017年   40篇
  2016年   52篇
  2015年   56篇
  2014年   53篇
  2013年   63篇
  2012年   80篇
  2011年   80篇
  2010年   67篇
  2009年   77篇
  2008年   49篇
  2007年   53篇
  2006年   68篇
  2005年   45篇
  2004年   39篇
  2003年   44篇
  2002年   38篇
  2001年   21篇
  2000年   24篇
  1999年   18篇
  1998年   15篇
  1997年   10篇
  1996年   15篇
  1995年   9篇
  1994年   8篇
  1993年   14篇
  1992年   21篇
  1991年   7篇
  1990年   14篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1984年   2篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   5篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   7篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1325条查询结果,搜索用时 265 毫秒
641.
张明  谢永刚 《灾害学》1999,14(2):69-72
根据对1998年嫩江、松花江特大洪水的详细调查资料,分析了洪水形成过程和特点。并阐述了洪涝灾害对主要受灾区黑龙江省的国民经济和粮食生产、工业交通、水利设施和人民生活等方面的影响。  相似文献   
642.
ABSTRACT: An environmental simulation model of the Upper St. Johns River Basin, Florida, has been developed in order to predict hydrologic responses under proposed management plans. Land use projections for each of 19 hydrologic planning units are provided by a linear programming analysis of agricultural activities. Inputs to the model include rainfall, runoff, evapotranspiration (ET), aquifer properties, topography, soil types, and vegetative patterns. A water balance is developed in the uplands based on infiltration, ET, surface runoff, and groundwater flow. Valley continuity is based on stage-volume relationship for inflows and outflows and a variable roughness coefficient dependent on vegetative patterns. Land use changes form the basis for predicting hydroperiod variation under alternative management schemes. Plans are ranked according to two criteria, deviation from a natural hydroperiod and flood or drought control provided. Results indicate that (1) a single reservoir without irrigation and (2) floodplain preservation plans are superior to (3) multiple reservoir with irrigation and (4) uncontrolled floodplain plans with regard to both criteria.  相似文献   
643.
ABSTRACT Scientists usually regard all water as merely passing through, but in different phases of, the endless hydrologic cycle. The law divides water in the cycle into several different classes. Each is treated separately and generally without consideration of interconnections existing within the cycle. Different rules of law have arisen concerning the ownership and use of each legal class. Under Texas law several classes of surface and ground water are recognized, and weather modification efforts bring yet another class, atmospheric moisture, under consideration. It is instructive to follow water moving through the hydrologic cycle in the Nueces River basin, Texas, as a framework for discussing the substantial interconnections between the various legal classes of water and the difficulties that arise from attempts to apply different rules of law to each class. Strictures imposed by Texas water law can seriously interfer with coordinated, efficient use and management of water resources, as evidenced by the Nueces River basin. Well-recognized, existing water rights in the several phases of the hydrologic cycle make change of these institutional constraints difficult to achieve.  相似文献   
644.
The Truckee River heads in the Sierra Nevada at Lake Tahoe, and terminates in Pyramid Lake. During the 1969 water year, flow about 9 miles upstream from the mouth (974,000 acre-ft) was almost four times the long-term average, due mainly to heavy winter rains and spring snowmelt. A short period of low-altitude rainfall produced the highest concentrations of suspended sediment, whereas a much longer subsequent period of snowmelt yielded a much greater total quantity of material. The upper 90 percent of the basin yielded about 260 acre-feet (630,000 tons) of sediment at the Nixon gage, whereas an estimated 2,800 acre-feet (6.8 million tons) was contributed by erosion of about 200 acres of river bank below the gage. Solute content at the gage ranged from 80 to 450 mg/l, dominated by calcium, sodium, and bicarbonate, plus silica in the most dilute snowmelt and chloride in the most concentrated low flows. Solute load totaled about 130,000 tons, of which the principal constituents in Pyramid Lake-sodium plus equivalent bicarbonate and chloride-amounted to almost 40,000 tons. The total solute load during a year of average flow may be 45,000-55,000 tons, including 18,000-22,000 tons of principal lake constituents.  相似文献   
645.
Laboratory observations were made on the stability of cubical blocks subjected to plunging water jets. The blocks were placed in a plunge basin at the base of a flip bucket. A dimensionless equation was derived and a nomogram was drawn to facilitate its solution. The results can be applied to determine the size of stones required to armor a plunge basin or scour hole.  相似文献   
646.
ABSTRACT: Changes in irrigation and land use may impact discharge of the Snake River Plain aquifer, which is a major contributor to flow of the Snake River in southern Idaho. The Snake River Basin planning and management model (SRBM) has been expanded to include the spatial distribution and temporal attenuation that occurs as aquifer stresses propagate through the aquifer to the river. The SRBM is a network flow model in which aquifer characteristics have been introduced through a matrix of response functions. The response functions were determined by independently simulating the effect of a unit stress in each cell of a finite difference groundwater flow model on six reaches of the Snake River. Cells were aggregated into 20 aquifer zones and average response functions for each river reach were included in the SRBM. This approach links many of the capabilities of surface and ground water flow models. Evaluation of an artificial recharge scenario approximately reproduced estimates made by direct simulation in a ground water flow model. The example demonstrated that the method can produce reasonable results but interpretation of the results can be biased if the simulation period is not of adequate duration.  相似文献   
647.
ABSTRACT: Infiltration processes at the plot scale are often described and modeled using a single effective hydraulic conductivity (Kg) value. This can lead to errors in runoff and erosion prediction. An integrated field measurement and modeling study was conducted to evaluate: (1) the relationship among rainfall intensity, spatially variable soil and vegetation characteristics, and infiltration processes; and (2) how this relationship could be modeled using Green and Ampt and a spatially distributed hydrologic model. Experiments were conducted using a newly developed variable intensity rainfall simulator on 2 m by 6 m plots in a rangeland watershed in southeastern Arizona. Rainfall application rates varied between 50 and 200 mm/hr. Results of the rainfall simulator experiments showed that the observed hydrologic response changed with changes in rainfall intensity and that the response varied with antecedent moisture condition. A distributed process based hydrologic simulation model was used to model the plots at different levels of hydrologic complexity. The measurement and simulation model results show that the rainfall runoff relationship cannot be accurately described or modeled using a single Kg value at the plot scale. Multi‐plane model configurations with infiltration parameters based on soil and plot characteristics resulted in a significant improvement over single‐plane configurations.  相似文献   
648.
The paper suggests that the expansion of irrigated agriculture in the 20th century has de-coupled the water user from the inherent risk of exploiting both surface and groundwater resources. The apparent reliability of storage and conveyance infrastructure and the, relative cheapness and flexibility of groundwater exploitation offered by mechanised drilling and pumping have sheltered the end user from natural hydrological risk. The imperative for in-field irrigation efficiency has been effectively removed since the physical and economic management of the resource is determined by command area authorities or, in the case of some groundwater pumping, by the performance of power utilities, who have no direct interest in integrated resource conservation. As a result, the resource base has been degraded, and in some cases irreparable damage has occurred. It is argued that the rigidity of the resource management in many irrigation systems is not attuned to the inherent variability of natural systems upon which they depend. Further, the paper argues that irrigation management systems can work toward sustainability by spreading risk equitably, and transparently, amongst the resource regulators, managers and users. This has to involve a much more flexible approach to natural resource management that is conditioned not only by natural parameters, but also by the socio-economic settings. A range of examples highlights the variability and scale issues involved.  相似文献   
649.
ABSTRACT: This paper discusses a computer program which extracts a number of watershed and drainage network properties directly from digital elevation models (DEM) to assist in the rapid parameterization of hydrologic runoff models. The program integrates new and established algorithms to address problems inherent in the analysis low-relief terrain from raster DEMs similar to those distributed by the U.S. Geological Survey for 7.5-minute quadrangles. The program delineates the drainage network from a DEM, and determines the Strahler order, total and direct drainage area, length, slope, and upstream and downstream coordinates of each channel link. It also identifies the subwatershed of each channel source and of the left and right bank of each channel link, and assigns a unique number to each network node. The node numbers are used to associate each subwatershed with the channel link to which it drains, and can be used to control flow routing in cascade hydrologic models. Program output includes tabular data and raster maps of the drainage network and subwatersheds. The raster maps are intended for import to a Geographical Information System where they can be registered to other data layers and used as templates to extract additional network and subwatershed information.  相似文献   
650.
ABSTRACT: Soil-water conditions provide valuable insight into the hydrologic system in an area. A soil-water balance quantitatively summarizes soil-water conditions and is based on climatic, soil, and vegetation characteristics that vary spatially and temporally. Soil-water balances in the Great Plains of the central United States were simulated for 1951–1980. Results of the simulations were mean annual estimates of infiltration, runoff, actual evapotranspiration, potential recharge, and consumptive water and irrigation requirements at 152 climatic data stations. A method was developed using a geographic information system to integrate and map the simulation results on the basis of spatially variable climatic, soil, and vegetation characteristics. As an example, simulated mean annual potential recharge was mapped. Mean annual potential-recharge rates ranged from less than 0.5 inch in much of the north-central and southwestern Great Plains to more than 10 inches in parts of eastern Texas and southwestern Arkansas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号