首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   73篇
  国内免费   56篇
安全科学   87篇
废物处理   14篇
环保管理   317篇
综合类   192篇
基础理论   321篇
环境理论   1篇
污染及防治   83篇
评价与监测   48篇
社会与环境   46篇
灾害及防治   19篇
  2024年   19篇
  2023年   31篇
  2022年   12篇
  2021年   38篇
  2020年   36篇
  2019年   28篇
  2018年   14篇
  2017年   27篇
  2016年   35篇
  2015年   25篇
  2014年   22篇
  2013年   60篇
  2012年   28篇
  2011年   69篇
  2010年   44篇
  2009年   77篇
  2008年   56篇
  2007年   47篇
  2006年   67篇
  2005年   44篇
  2004年   30篇
  2003年   29篇
  2002年   29篇
  2001年   21篇
  2000年   22篇
  1999年   12篇
  1998年   21篇
  1997年   14篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1981年   9篇
  1980年   7篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
排序方式: 共有1128条查询结果,搜索用时 15 毫秒
221.
    
In the context of geologic carbon dioxide (CO2) sequestration, the storage effectiveness of a caprock–reservoir system is a function of the properties of both the caprock and reservoir – namely, the ability of the caprock to prevent upward leakage of CO2 (caprock sealing capability), the mechanical response of the reservoir and caprock (by evaluating in situ stress changes), and the extent and degree to which CO2 can be trapped over long periods of time. In this work, all three parameters were considered to evaluate the storage effectiveness of the Cambrian–Ordovician sequence of the Northern Appalachian Basin. We constructed a series of hydro‐mechanical models to investigate interactions between CO2 flow and geomechanical processes and to evaluate the three aspects of storage performance. Models were built to evaluate two scenarios: (1) single reservoirs with a single overlying caprock, and (2) systems comprising multiple reservoirs and multiple intermediate caprock units in addition to the primary (uppermost) caprock unit. The overall conclusion of the work is that focusing only on one aspect of storage effectiveness might not necessarily warrant long‐term CO2 storage. Results of the sensitivity analysis for the single caprock–reservoir system show that each storage effectiveness metric has its own control parameters. A comparison among three stacked caprock–reservoir systems in different parts of the study area shows that each location in the study area could be appropriate for one of the storage effectiveness metrics. Therefore, we conclude that the screening process to select the best site for CO2 sequestration should be based on an evaluation of all three metrics. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.  相似文献   
222.
    
We examine the robustness of a suite of regional climate models (RCMs) in simulating meteorological droughts and associated metrics in present‐day climate (1971‐2003) over the conterminous United States (U.S.). The RCMs that are part of North American Regional Climate Change Assessment Program (NARCCAP) simulations are compared with multiple observations over the climatologically homogeneous regions of the U.S. The seasonal precipitation, climatology, drought attributes, and trends have been assessed. The reanalysis‐based multi‐model median RCM reasonably simulates observed statistical attributes of drought and the regional detail due to topographic forcing. However, models fail to simulate significant drying trend over the Southwest and West. Further, reanalysis‐based NARCCAP runs underestimate the observed drought frequency overall, with the exception of the Southwest; whereas they underestimate persistence in the drought‐affected areas over the Southwest and West‐North Central regions. However, global climate model‐driven NARCCAP ensembles tend to overestimate regional drought frequencies. Models exhibit considerable uncertainties while reproducing meteorological drought statistics, as evidenced by a general lack of agreement in the Hurst exponent, which in turn controls drought persistence. Water resources managers need to be aware of the limitations of current climate models, while regional climate modelers may want to fine‐tune their parameters to address impact‐relevant metrics.  相似文献   
223.
    
Growing or shrinking cities can experience increases in vacant land. As urban populations and boundaries fluctuate, holes can open in once tight urban areas. Many cities chase growth-oriented approaches to dealing with vacancies. It is critical to understand land-use alteration to accurately predict transformations of physical change in order to make better informed decisions about this phenomenon. This research utilizes the land transformation model (LTM), an artificial neural networking mechanism in Geographic Information Systems, to forecast vacant land. Variable influence on vacant land prediction and accuracy of the LTM is assessed by comparing input factors and patterns, using time-series data from 1990 to 2010 in Fort Worth, Texas, USA. Results indicate that the LTM can be useful in simulating vacant land-use changes but more precise mechanisms are necessary to increase accuracy. This will allow for more proactive decisions to better regulate the process of urban decline and regeneration.  相似文献   
224.
    
Water supply reliability is expected to be affected by both precipitation amount and distribution changes under recent and future climate change. We compare historical (1951‐2010) changes in annual‐mean and annual‐maximum daily precipitation in the global set of station observations from Global Historical Climatology Network and climate models from the Inter‐Sectoral Impact Model Intercomparison Project (ISI‐MIP), and develop the study to 2011‐2099 for model projections under high radiative forcing scenario (RCP8.5). We develop a simple rainwater harvesting system (RWHS) model and drive it with observational and modeled precipitation. We study the changes in mean and maximum precipitation along with changes in the reliability of the model RWHS as tools to assess the impact of changes in precipitation amount and distribution on reliability of precipitation‐fed water supplies. Results show faster increase in observed maximum precipitation (10.14% per K global warming) than mean precipitation (7.64% per K), and increased reliability of the model RWHS driven by observed precipitation by an average of 0.2% per decade. The ISI‐MIP models show even faster increase in maximum precipitation compared to mean precipitation. However, they imply decreases in mean reliability, for an average 0.15% per decade. Compared to observations, climate models underestimate the increasing trends in mean and maximum precipitation and show the opposite direction of change in reliability of a model water supply system.  相似文献   
225.
This paper presents results from a series of numerical experiments designed to evaluate operational long-range dispersion model simulations, and to investigate the effect of different temporal and spatial resolution of meteorological data from numerical weather prediction models on these simulations. Results of Lagrangian particle dispersion simulations of the first tracer release of the European Tracer Experiment (ETEX) are presented and compared with measured tracer concentrations. The use of analyzed data of higher resolution from the European Center for Medium-Range Weather Forecasts (ECMWF) model produced significantly better agreement between the concentrations predicted with the dispersion model and the ETEX measurements than the use of lower resolution Navy Operational Global Atmospheric Prediction System (NOGAPS) forecast data. Numerical experiments were performed in which the ECMWF model data with lower vertical resolution (4 instead of 7 levels below 500 mb), lower temporal resolution (12 h instead of 6 h intervals), and lower horizontal resolution (2.5° instead of 0.5°) were used. Degrading the horizontal or temporal resolution of the ECMWF data resulted in decreased accuracy of the dispersion simulations. These results indicate that flow features resolved by the numerical weather prediction model data at approximately 45 km horizontal grid spacing and 6 h time intervals, but not resolved at 225 km spacing and 12 h intervals, made an important contribution to the long-range dispersion.  相似文献   
226.
Overflows and leakage from aboveground storage tanks and pipelines carrying crude oil and petroleum products occur frequently. The spilled hydrocarbons pose environmental threats by contaminating the surrounding soil and the underlying ground water. Predicting the fate and transport of these chemicals is required for environmental risk assessment and for remedial measure design. The present paper discusses the formulation and application of the Oil Surface Flow Screening Model (OILSFSM) for predicting the surface flow of oil by taking into account infiltration and evaporation. Surface flow is simulated using a semi-analytical model based on the lubrication theory approximation of viscous flow. Infiltration is simulated using a version of the Green and Ampt infiltration model, which is modified to account for oil properties. Evaporation of volatile compounds is simulated using a compositional model that accounts for the changes in the fraction of each compound in the spilled oil. The coupling between surface flow, infiltration and evaporation is achieved by incorporating the infiltration and evaporation fluxes into the global continuity equation of the spilled oil. The model was verified against numerical models for infiltration and analytical models for surface flow. The verification study demonstrates the applicability of the model.  相似文献   
227.
为解析再生水补水对城市内河水质的影响,以合肥市塘西河为例,采用一维水动力水质模型,结合模糊模式识别方法,研究再生水补水位置、水质和补水量对塘西河水质的影响。模拟结果表明:再生水补水改变了河流水动力特征、污染物负荷及其扩散降解过程,影响河流水质空间分布,且对补给点附近的河流水质影响最为显著;通过模糊模式识别分析发现,补给点越靠近上游对河流水质的改善作用越大,提高补水水质或增大补水水量均可进一步改善河流水质。  相似文献   
228.
Effective diffusion coefficients (D(e)) are usually measured by means of "through-diffusion" experiments in which steady state is reached, and the "time-lag" methods are used to estimate the apparent diffusion coefficient (D(a)). For sorbing radionuclides (as caesium), the time needed to reach steady-state conditions is very large, and the precision in D(a) determinations is not satisfactory. In this paper, a method that allows determining simultaneously effective and apparent diffusion coefficients in compacted bentonite without reaching steady-state conditions is described. Basically, this method consists of an "in-diffusion" experiment in which the concentration profile in the bentonite sample is used to estimate D(a), and the temporal evolution of the solute concentration in the reservoir is used to estimate D(e). This method has several advantages over the typical "through-diffusion" experiments, in particular: (a) experiment duration is significantly shorter, (b) D(a) values are measured with greater precision and (c) it is not necessary to maintain a constant solute concentration in the reservoir. This new method has been used to estimate the effective and apparent diffusion coefficients for caesium in FEBEX bentonite and in order to validate it, the results have been compared with results previously obtained with standard methods. Experimental results have been satisfactorily modelled using a simple model of diffusion in porewater and the measured value of D(e)(Cs) is very similar to D(e)(HTO) in the same bentonite. There is no evidence of "surface diffusion" in FEBEX bentonite for caesium.  相似文献   
229.
The feasibility of using a chemical reaction-based approach for evaluating and modelling the role of adsorption reactions in determining the geochernical confinement capacity of natural geological barriers is being studied as part of an on-going R & D programme. The confined superficial aquifer underlying the Centre de Stockage de l'Aube facility, a geological barrier for this site, has been used as a case study with the following aims. First, development of a site characterisation protocol and demonstration of its use to determine the principal geochemical characteristics of aquifer materials using batch experiments and to represent the information obtained in terms of a chemical model. The experimental results obtained for Ni2+ partitioning as a function of total Ni, pH, total Ca and total solid can be satisfactorily represented in terms of reactions with an ion exchange site and a single amphoteric surface hydroxyl site with ferrihydrite reaction constants. A second objective is the incorporation of the reactions in a coupled geochemistry/transport code, and to verify the applicability of the coupled code predictions for Ni2+ mass transfer by comparison with the results obtained during column tracer experiments. The breakthrough curve and equilibrium solid phase Ni loading, predicted by a one-dimensional coupled model for a column tracer experiment, agree closely with observed data.Additional studies are underway to reduce model conditionality, to extend the adsorption model to other analogue cations and anions, to incorporate the effect of natural organic matter and to take into consideration precipitation/dissolution of amorphous Fe surface phases.  相似文献   
230.
Infectious disease surveillance has become an international top priority due to the perceived risk of bioterrorism. This is driving the improvement of real-time geo-spatial surveillance systems for monitoring disease indicators, which is expected to have many benefits beyond detecting a bioterror event. West Nile Virus surveillance in New York State (USA) is highlighted as a working system that uses dead American Crows (Corvus brachyrhynchos) to prospectively indicate viral activity prior to human onset. A cross-disciplinary review is then presented to argue that this system, and infectious disease surveillance in general, can be improved by complementing spatial cluster detection of an outcome variable with predictive “risk mapping” that incorporates spatiotemporal data on the environment, climate and human population through the flexible class of generalized linear mixed models.
Glen D. JohnsonEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号