首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  国内免费   10篇
环保管理   14篇
综合类   13篇
基础理论   10篇
污染及防治   1篇
评价与监测   3篇
社会与环境   4篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有45条查询结果,搜索用时 62 毫秒
21.
为了解滑石矿开采对河流水生态环境的影响,分别于2015年11月、2016年4月和2016年7月这3个时期对汤河(太子河重要支流)上游6个监测断面(TH01~TH02为参照河段,TH03~TH04为受损河段,TH05~TH06为恢复河段)的水质状况和着生藻群落进行了调查分析.利用Mann-Whitney U检验分析比较了各河段水环境因子和着生藻群落结构组成的差异;利用Spearman相关性分析、典范对应分析(canonical correspondence analysis)和t值双标图(t value biplot)分析水环境因子与着生藻群落结构的相互关系.结果表明:(1)与参照河段和恢复河段相比,受损河段的Mg、Se、As、Fe、Mo、EC、HCO-3、NO-3和p H均值最高.其中,Mg、Mo、As、EC、HCO-3在受损河段与其他河段间存在显著差异(P0.05).(2)与其他河段相比,受损河段的着生藻密度、物种丰富度、具柄硅藻百分比、曲壳藻属(Achnanthes sp.)相对丰度均最小,可运动硅藻百分比、双菱藻属(Surirella sp.)相对丰度和舟形藻属(Navicula sp.)相对丰度最大,其中物种丰富度在受损河段与其他河段间存在显著差异(P0.05).(3)EC、HCO-3和Mg对研究区域的着生藻群落结构有显著影响,且均与物种丰富度、具柄硅藻百分比显著相关(P0.05).  相似文献   
22.
Periphyton samples from Water Conservation Areas, Big Cypress National Preserve, and Everglades National Park in south Florida were analyzed for concentrations of total mercury, methylmercury, nitrogen, phosphorus, organic carbon, and inorganic carbon. Concentrations of total mercury in periphyton decrease slightly along a gradient from north‐to‐south. Both total mercury and methylmercury are positively correlated with organic carbon, nitrogen and phosphorus in periphyton. In horizontal sections of periphyton mats, total mercury concentrations tend to be largest at the tops and bottoms of the mats. Methylmercury concentrations tend to be the largest near the bottom of mats. These localized elevated concentrations of methylmercury suggest that there are “hot spots”; of methylmercury in periphyton.  相似文献   
23.
ABSTRACT: Protein, carbohydrate, and organic content of Aufwuchs samples from artificial streams dosed separately With chlorine, copper, or dextrose were altered by changes in the taxonomic composition or physiological condition of the community. Protein content increased as community composition shifted toward a dominance. by blue-green algae or heterotrophs. Bluegreens or cyanobacteria were dominant most often in Aufwuchs developing under copper or chlorine treatments and when water temperatures approached the seasonal maximum (22.8 C-25.8 0, while heterotrophs proliferated in the dextrose-enriched stream. Due to the associated extracellular mucilage, carbohydrate content also tended to be higher when blue-green algae or bacteria were abundant. However, carbohydrate content decreased in communities developing under chlorine or copper treatments at low or moderate temperatures (3 C-22.8 C), indicating a utilization of stored photosynthetic products to adapt to the stress. The organic content of Aufwuchs was related to the extent of mucilage production and the tendency of the community to accumulate detritus and suspended inorganic sediment. Protein and carbohydrate estimates were significantly correlated with dry weight and ash-free dry weight, a result of the copious extracellular mucilage associated with rapidly growing blue greens and other bacteria. Estimates of Aufwuchs food quality are important in evaluating the impact of pollutants on higher trophic levels; however, the tendency of change with both taxonomic shifts and physiological adaptations tends to confound interpretations for water quality assessment.  相似文献   
24.
Abstract: In 2003, the U.S. Geological Survey (USGS) National Water‐Quality Assessment (NAWQA) program and U.S. Environmental Protection Agency studied total mercury (THg) and methylmercury (MeHg) concentrations in periphyton at eight rivers in the United States in coordination with a larger USGS study on mercury cycling in rivers. Periphyton samples were collected using trace element clean techniques and NAWQA sampling protocols in spring and fall from targeted habitats (streambed surface‐sediment, cobble, or woody snags) at each river site. A positive correlation was observed between concentrations of THg and MeHg in periphyton (r2 = 0.88, in log‐log space). Mean MeHg and THg concentrations in surface‐sediment periphyton were significantly higher (1,333 ng/m2 for MeHg and 53,980 ng/m2 for THg) than cobble (64 ng/m2 for MeHg and 1,192 ng/m2 for THg) or woody snag (71 ng/m2 for MeHg and 1,089 ng/m2 for THg) periphyton. Concentrations of THg in surface‐sediment periphyton had a strong positive correlation with concentrations of THg in sediment (dry weight). The ratio of MeHg:THg in surface‐sediment periphyton increased with the ratio of MeHg:THg in sediment. These data suggest periphyton may play a key role in mercury bioaccumulation in river ecosystems.  相似文献   
25.
ABSTRACT: Artificial streams can assist in assessing the potential impact of pollutants on the structure and function of aquatic communities. While most artificial streams are constructed within a controlled environment or are maintained by recirculating water, we constructed a series of artificial streams along a river bank using river water on a once through basis. This system was used to develop and test methods for structural and functional analyses of Aufwuchs communities. Only the flow rate and stream depth were controlled while individual streams were perturbed to obtain communities of altered ecological condition. This experimental system provided a relatively inexpensive series of treated and untreated streams which allowed an evaluation and comparison of methods using communities under various stressed and nonstressed conditions. Without the stabilizing effects of a controlled atmosphere or recirculating water, our approach demonstrated a degree of variability which approached that of the river. We inferred that the Aufwuchs community present in the artificial streams maintained a high degree of structural complexity and functional dynamism, providing a strong test of our methods and an opportunity to examine current ecological theory.  相似文献   
26.
Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by ≤ 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L−1 in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L−1, DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   
27.
Periphyton colonization and sediment bioassessment were used ina survey to compare the relative environmental condition ofsampling sites located in Florida Bay and four peripheral sloughareas during the summer of 1995. Periphyton biomass, pigmentcontent, tissue quality and community composition weredetermined. In addition, benthic community composition and thetoxicities of whole sediments and associated pore waters weredetermined for two species of rooted macrophytes, an epibenthicinvertebrate and bioluminescent bacteria. Several locational differences were observed for the response parameters.Periphyton biomass was significantly greater in the Taylor Riverand the least in Shell Creek (P < 0.05). Most sediments were notacutely toxic to mysid shrimp nor phytotoxic. However, sedimentsfrom the Taylor River were more phytostimulatory than others (P< 0.05). Contaminant bioresidues were similar at most sites,however, mercury, chromium and nickel concentrations weregreater for periphyton colonized in the Taylor River and TroutCreek areas. Structural characteristics of the periphytic algalcommunity usually were statistically similar but a consistenttrend of lower density and diversity was evident for ShellCreek. The benthic community was the least diverse and dense inthe Canal C-111. The results of this study provide an initialindication of differences in the role of several slough areas aspossible sources of bioavailable contaminants to Florida Baywhich warrants additional investigation.  相似文献   
28.
2018年8月(丰水期),在嫩江支流甘河,调查了19个点位的着生藻类群落结构和水环境特征。并运用聚类分析、Mcnaughton优势度分析和IBD(biological diatom index,硅藻生物指数)3种方法研究了甘河着生硅藻群落结构和优势种清洁状况,使用主成分分析、Spearman相关分析和冗余分析等统计分析方法研究了甘河着生硅藻群落和环境因子的响应关系。结果表明:甘河共鉴定出着生藻类90种(属),以硅藻门、绿藻门和蓝藻门为主,生物量丰富。丰水期甘河水生态环境质量状况较为健康,着生硅藻主要由清洁种构成,其中Achnanthidium minutissimum优势度0.48,为绝对优势种。聚类分析结果表明,甘河采样点位可分为3组;其中组1和组2点位主要位于甘河上、中游,上、中游水质、生境质量较好,健康程度较高,优势种均为清洁种,上游Achnanthidium minutissimum优势度达到了0.64;组3点位均位于甘河下游,下游人为干扰较强,健康程度较其余两组偏低,Nitzschia palea和Nitzschia paleaeformis等耐污种在组3的优势度较高。导致甘河着生硅藻群落清洁度由上游到下游逐渐变差的主要水环境因子为电导率、总磷和高锰酸盐指数,其中影响中游硅藻群落结构变化的主要水环境因子为高锰酸盐指数,影响下游硅藻群落结构变化的主要水环境因子为电导率和总磷。由此可见,着生硅藻群落可以较好的指示甘河流域水体有机污染程度和营养富集程度。  相似文献   
29.
The ratio of metal:P stoichiometry was used to identify the accumulation pathways of heavy metals (V, Cr, Co, Ni, Cu, Cd, and Pb) from periphyton to snails Cipangopaludina chinensis Gray (C. chinensis) in the Bai River watershed. The results showed that periphyton communities were mainly composed of two types of algae, filamentous green algae and unicellular diatoms. The proportion of unicellular diatoms in the periphyton community is a key factor that influences metal accumulation in C. chinensis. The V, Cr, Co, Ni, and Cd content of C. chinensis increased steadily as the corresponding metal content of periphyton increased, but Cu and Pb in the snail did not increase in the periphyton. Mechanisms of V, Cr, and Ni accumulation were found to be related to the proportion of diatoms, while Cd and Pb accumulation were dependent on the physiological characteristics of C. chinensis. The accumulation of Cu in C. chinensis was closely related to their grazing behavior. The metal:P stoichiometry revealed that Cr, Ni, and Cd can reduce the potential ecological risks associated with increased P inputs to the ecosystem. V and Co were considered to be relatively safe, regardless of the periphyton P content. Finally, Pb may not be prone to transfer to higher trophic levels, and may pose the lowest ecological risks of the studied heavy metals, but Cu can cause potential ecological risks when eutrophication has occurred.  相似文献   
30.
目前人工水草、弹性填料等多种载体广泛用于地表水体净化,通过载体表面富集的周丛生物去除污染物达到净化效果.尤其在周丛生物存在情况下,不同水层的氧化还原带分布情况与污染物的去除有着直接或间接的关系,因此,研究周丛生物存在下不同水层氧化还原带的分布及其微生物特征具有重要的实际意义.在模拟的水柱装置中,加入玄武湖采集的富营养化水,再悬挂弹性填料富集周丛生物,待周丛生物生长达到稳定期之后,监测不同水层氧化还原因子及其微生物.结果表明,周丛生物作用下,水柱中不同水层自上而下依次出现5条氧化还原带,周丛生物在每个带所利用的最终电子受体分别为O2、NO-3、Fe3+、CO2和SO2-4,依次称为氧还原带、NO-3还原带、铁还原带、产甲烷带和SO2-4还原带;各带的标志性物质DO、NO-2、Fe2+、HCO-3和硫化物的最高值分别为11.290、4.950、38.326、120.000和12.180 mg·L-1.通过Biolog技术监测微生物特征显示:不同水层对应的周丛生物其组成、代谢活性、碳源利用能力存在显著差异,由此造成了不同水层氧化还原带的分布.不同水层氧化还原带分布及其微生物特征的研究,为揭示周丛生物净化不同深度水体水质提供了科学解释,也为发展高效的基于周丛生物净化水质的技术提供了理论依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号