首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   14篇
  国内免费   7篇
安全科学   1篇
废物处理   1篇
环保管理   8篇
综合类   20篇
基础理论   100篇
污染及防治   10篇
评价与监测   8篇
社会与环境   9篇
  2023年   4篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   8篇
  2010年   13篇
  2009年   11篇
  2008年   10篇
  2007年   13篇
  2006年   11篇
  2005年   11篇
  2004年   10篇
  2003年   2篇
  2002年   3篇
  2000年   5篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
31.
Abstract: Studies comparing dispersal in fragmented versus unfragmented landscapes show that habitat fragmentation alters the dispersal behavior of many species. We used two complementary approaches to explore Florida Scrub‐Jay (Aphelocoma c?rulescens) dispersal in relation to landscape fragmentation. First, we compared dispersal distances of color‐marked individuals in intensively monitored continuous and fragmented landscapes. Second, we estimated effective dispersal relative to the degree of fragmentation (as inferred from two landscape indexes: proportion of study site covered with Florida Scrub‐Jay habitat and mean distance to nearest habitat patch within each study site) by comparing genetic isolation‐by‐distance regressions among 13 study sites having a range of landscape structures. Among color‐banded individuals, dispersal distances were greater in fragmented versus continuous landscapes, a result consistent with other studies. Nevertheless, genetic analyses revealed that effective dispersal decreases as the proportion of habitat in the landscape decreases. These results suggest that although individual Florida Scrub‐Jays may disperse farther as fragmentation increases, those that do so are less successful as breeders than those that disperse short distances. Our study highlights the importance of combining observational data with genetic inferences when evaluating the complex biological and life‐history implications of dispersal.  相似文献   
32.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   
33.
34.
Abstract: High‐latitude coral reefs (HLRs) are potentially vulnerable marine ecosystems facing well‐documented threats to tropical reefs and exposure to suboptimal temperatures and insolation. In addition, because of their geographic isolation, HLRs may have poor or erratic larval connections to tropical reefs and a reduced genetic diversity and capacity to respond to environmental change. On Australia's east coast, a system of marine protected areas (MPAs) has been established with the aim of conserving HLRs in part by providing sources of colonizing larvae. To examine the effectiveness of existing MPAs as networks for dispersal, we compared genetic diversity within and among the HLRs in MPAs and between these HLRs and tropical reefs on the southern Great Barrier Reef (GBR). The 2 coral species best represented on Australian HLRs (the brooding Pocillopora damicornis and the broadcast‐spawning Goniastrea australensis) exhibited sharply contrasting patterns of diversity and connectedness. For P. damicornis, the 8‐locus genetic and genotypic diversity declined dramatically with increasing latitude (Na= 3.6–1.2, He= 0.3–0.03, Ng:N = 0.87–0.06), although population structure was consistent with recruitment derived largely from sexual reproduction (Go:Ge= 1.28–0.55). Genetic differentiation was high among the HLRs (FST[SD]= 0.32 [0.08], p < 0.05) and between the GBR and the HLRs (FST= 0.24 [0.06], p < 0.05), which indicates these temperate populations are effectively closed. In contrast for G. australensis, 9‐locus genetic diversity was more consistent across reefs (Na= 4.2–3.9, He= 0.3–0.26, Ng:N = 1–0.61), and there was no differentiation among regions (FST= 0.00 [0.004], p > 0.05), which implies the HLRs and the southern GBR are strongly interconnected. Our results demonstrate that although the current MPAs appear to capture most of the genetic diversity present within the HLR systems for these 2 species, their sharply contrasting patterns of connectivity indicate some taxa, such as P. damicornis, will be more vulnerable than others, and this disparity will provide challenges for future management.  相似文献   
35.
In socially monogamous birds, females may express mate preferences when they first select a breeding partner, through divorce and subsequent breeding dispersal to a new partner and through extrapair mating. We examined settlement patterns, divorce and breeding dispersal in a sedentary Australian passerine, the brown thornbill (Acanthiza pusilla), in relation to two traits known to influence extrapair paternity (male age and male size). Settlement decisions, divorce and territory switching behaviour were all female strategies that reduced their likelihood of breeding with 1-year-old males. Females preferred to settle in territories with 2+ -year-old males, were more likely to divorce 1-year-old males, and only switched territories if they had an opportunity to form a new pair bond with an old male. In contrast, female settlement and divorce decisions were not influenced by male size. Female thornbills obtain a direct benefit from preferring older males as social mates because breeding success improves with male age in brown thornbills. Nevertheless, divorce rates in this species were low (14% of pair bonds were terminated by divorce), and individuals rarely switched territories following the death of a mate. Both of these mating strategies appeared to be primarily constrained by the distance adults moved to initiate a new pair bond (1–2 territories) and by the limited availability of unpaired older males in the immediate neighbourhood.Communicated by M. Webster  相似文献   
36.
基于博格达山北坡68个表土样品花粉组合特征,对比植物群落样方调查结果,借助聚类分析、主成分分析方法,探讨了表土花粉组合与现代植被分布的关系。研究表明,(1)博格达山北坡表土花粉可划归5个不同植被带,湿度是影响其分布的主要因素,藜科(Chenopodiaceae)、蒿属(Artemisia)、云杉属(Picea)花粉分布受气流影响显著,忽略它们对其他植被带花粉组合的干扰,表土花粉与现代植被分布对应良好。各植被带均有其特有的花粉组合方式,山地荒漠带藜科-蒿属组合占绝对优势,山地草原带演替为蒿属-藜科-禾本科(Poaceae)-蔷薇科(Rosaceae)组合,山地森林带以云杉属-桦木属(Betula)-蒿属-藜科-禾本科为主,高山草甸带以蒿属-云杉属-藜科-莎草科(Cyperaceae)组合为特征,高山垫状植被带表现为蒿属-藜科-蔷薇科-云杉属组合。(2)草本植物花粉含量(62.7%)优势明显,乔、灌木(37.3%)次之。蒿属(23.1%)、藜科(21.5%)、云杉属(18.1%)、莎草科(9.4%)、禾本科(8.6%)、桦木属(5.7%)、蔷薇科(5.3%)等科(属)含量高、变幅大,为最主要的花粉类型,可作为古气候研究的重要依据,藜科、蒿属产量大、易传播,表现出超代表性,云杉属代表性较好,莎草科则受自身结构及保存条件等多重因素影响呈低代表性。(3)蒿属/藜科(A/C)比值不仅能将山地荒漠带、山地草原带区分开,还能指示研究区域湿度变化,古环境重建时可作为区域有效湿度的代用指标。  相似文献   
37.
Natural dispersal of young animals was studied in the colonies of Spermophilus major and S. suslicus ground squirrels in the Volga region. On the basis of data obtained, this process was modeled taking into account the spatial–ethological structure of the colonies. In both species, male dispersal was more active, whereas the degree of natal philopatry was higher in females. The results of the study do not confirm the aggression concept of juvenile dispersal and indicate that its causes are related to hereditary behavioral tendencies. These results are compared with data on juvenile dispersal in other species of the genus Spermophilus.  相似文献   
38.
Differential access to food resources is thought to be the main determinant of differences in female reproductive success but is poorly studied in both pair-living and nocturnal primates. The modes of food competition within and between families were investigated following the principles proposed by the ecological model using 3 years of field data from seven fork-marked lemur (Phaner furcifer) families. The major food resources were identified from year-round feeding observations and the strength and mode of competition were inferred from differences in physical condition. The most important food resource of fork-marked lemurs were tree exudates which occurred in small, defendable food patches, characterized by fast depletion and rapid renewal. These characteristics led to strong within-group contest and scramble competition, which were found to yield a positive dominance effect and a negative group-size effect on female net energy gain. Differential physical condition, however, did not translate directly into differential reproductive success. Low female fertility was best predicted by large family size associated with delayed dispersal by previous offspring. Although there is no obvious benefit from full-grown offspring in their territory, adults tolerate delayed natal dispersal, probably because dispersal poses extraordinary costs for the offspring. These costs are likely to accrue from decreased foraging efficiency in unfamiliar habitats because exudate feeding requires very rigid feeding itineraries. In conclusion, the presented evidence for group-size effects on reproductive success in pair-living females opens a new area for research on the costs and benefits of delayed dispersal and female reproductive decisions.This revised version was published in September 2003 with corrections to the Authors Present address.An erratum to this article can be found at Communicated by E.H.M. Sterck  相似文献   
39.
中国-喜马拉雅柴胡属的花粉形态及其系统学意义   总被引:1,自引:0,他引:1  
本文报道了中国-喜马拉雅柴胡属(BupleurumL.)24种,7变种,2变型的花粉形态研究结果,全部在光学显微镜和扫描电镜下作了比较观察。有关柴胡属花粉形态的研究,除大苞柴胡(B.euphorbioidesNakai)和红柴胡(B,scorzonerifoliumWilld.)外.其余均为首次报道,根据该属花粉粒的形态和萌发孔特征,其花粉形态可分为三个类型,即:近菱形角孔类型、矩形边孔类型及其二者之间的过渡类型。花粉形态资料支持德国植物系统学家德鲁特(O,Drude,1898)关于柴胡属的系统位置,将其隶于芹亚科(Apioideae),芹族(Apieae),葛缕子亚族(Carinae)。  相似文献   
40.
Ammophila arenaria, an invasive European beach grass, dominates most United States Pacific coast beaches north of San Francisco Bay, and it appears to severely reduce opportunities for regeneration of native plant species, including American beach grass,Leymus mollis. The knowledge of how longAmmophila rhizomes can survive in sea-water is important for long-tern management strategies, which must consider the probability of reinvasion of areas whereAmmophila has been eradicated. The bud viability of bothAmmophila arenaria andLeymus mollis remained high following submergence in sea-water for 7 days, andLeymus bud viability was still high after 13 days submergence. In fact,Leymus bud viability appears to be enhanced slightly by submergence for 7 days in sea-water. SinceAmmophila rhizomes retain a mean bud viability of >50% following submergence for 7 days, there is clearly the potential for long distance dispersal to other beaches. Even after 13 days of submergence,Ammophila rhizomes still had a mean bud viability of 8.5%. Assuming near-shore current speeds of 5–45 cm/sec, viableAmmophila rhizomes can be transported up to 505 km in 13 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号