首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5564篇
  免费   490篇
  国内免费   1145篇
安全科学   571篇
废物处理   91篇
环保管理   1031篇
综合类   2799篇
基础理论   1013篇
环境理论   51篇
污染及防治   549篇
评价与监测   279篇
社会与环境   594篇
灾害及防治   221篇
  2024年   13篇
  2023年   88篇
  2022年   151篇
  2021年   209篇
  2020年   195篇
  2019年   248篇
  2018年   255篇
  2017年   302篇
  2016年   347篇
  2015年   339篇
  2014年   291篇
  2013年   522篇
  2012年   451篇
  2011年   488篇
  2010年   340篇
  2009年   355篇
  2008年   281篇
  2007年   390篇
  2006年   298篇
  2005年   235篇
  2004年   201篇
  2003年   191篇
  2002年   168篇
  2001年   124篇
  2000年   139篇
  1999年   123篇
  1998年   73篇
  1997年   78篇
  1996年   47篇
  1995年   48篇
  1994年   47篇
  1993年   48篇
  1992年   23篇
  1991年   21篇
  1990年   19篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有7199条查询结果,搜索用时 437 毫秒
981.
“十一五”期间辽河铁岭段及支流水质变化趋势   总被引:2,自引:0,他引:2  
用Daniel的Spearman秩相关系数法对辽河铁岭段及支流在"十一五"期间水质进行趋势检验,确定各监测断面超标污染物及综合污染指数上升或下降趋势的显著性,结合铁岭市"十一五"期间的污染治理措施,分析各项污染物产生变化的原因,提出了今后的工作方向,为进一步加强环境管理提供了依据。  相似文献   
982.
采用水培实验对蜈蚣草吸收As(Ⅲ)的吸收特性进行了研究,结果表明在各个处理浓度范围内,培养液中As(Ⅲ)的吸收效率随着时间递增.当处理浓度为10 mg·L-1时,24 h后蜈蚣草对As(Ⅲ)的吸收高达97.57%,而在处理浓度为500 mg·L^-1和1000 mg·L^-1时,蜈蚣草对As(Ⅲ)的吸收比例明显降低,吸...  相似文献   
983.
Hester, Erich T. and Martin W. Doyle, 2011. Human Impacts to River Temperature and Their Effects on Biological Processes: A Quantitative Synthesis. Journal of the American Water Resources Association (JAWRA) 47(3):571‐587. DOI: 10.1111/j.1752‐1688.2011.00525.x Abstract: Land‐use change and water resources management increasingly impact stream and river temperatures and therefore aquatic organisms. Efforts at thermal mitigation are expected to grow in future decades. Yet the biological consequences of both human thermal impacts and proposed mitigation options are poorly quantified. This study provides such context for river thermal management in two ways. First, we summarize the full spectrum of human thermal impacts to help thermal managers consider the relative magnitudes of all impacts and mitigation options. Second, we synthesize biological sensitivity to river temperature shifts using thermal performance curves, which relate organism‐level biological processes to temperature. This approach supplements the popular use of thermal thresholds by directly estimating the impact of temperature shifts on the rates of key biological processes (e.g., growth). Our results quantify a diverse array of human thermal impacts, revealing that human actions tend to increase more than decrease river temperatures. Our results also provide a practical framework in which to quantify the sensitivity of river organisms to such impacts and related mitigation options. Finally, among the data and studies we synthesized, river organisms appear to be more sensitive to temperature above than below their thermal maxima, and fish are more sensitive to temperature change than invertebrates.  相似文献   
984.
Hirsch, Robert M., 2011. A Perspective on Nonstationarity and Water Management. Journal of the American Water Resources Association (JAWRA) 47(3):436‐446. DOI: 10.1111/j.1752‐1688.2011.00539.x Abstract: This essay offers some perspectives on climate‐related nonstationarity and water resources. Hydrologists must not lose sight of the many sources of nonstationarity, recognizing that many of them may be of much greater magnitude than those that may arise from climate change. It is paradoxical that statistical and deterministic approaches give us better insights about changes in mean conditions than about the tails of probability distributions, and yet the tails are very important to water management. Another paradox is that it is difficult to distinguish between long‐term hydrologic persistence and trend. Using very long hydrologic records is helpful in mitigating this problem, but does not guarantee success. Empirical approaches, using long‐term hydrologic records, should be an important part of the portfolio of research being applied to understand the hydrologic response to climate change. An example presented here shows very mixed results for trends in the size of the annual floods, with some strong clusters of positive trends and a strong cluster of negative trends. The potential for nonstationarity highlights the importance of the continuity of hydrologic records, the need for repeated analysis of the data as the time series grow, and the need for a well‐trained cadre of scientists and engineers, ready to interpret the data and use those analyses to help adjust the management of our water resources.  相似文献   
985.
Villarini, Gabriele, James A. Smith, Mary Lynn Baeck, and Witold F. Krajewski, 2011. Examining Flood Frequency Distributions in the Midwest U.S. Journal of the American Water Resources Association (JAWRA) 47(3):447‐463. DOI: 10.1111/j.1752‐1688.2011.00540.x Abstract: Annual maximum peak discharge time series from 196 stream gage stations with a record of at least 75 years from the Midwest United States is examined to study flood peak distributions from a regional point of view. The focus of this study is to evaluate: (1) “mixtures” of flood peak distributions, (2) upper tail and scaling properties of the flood peak distributions, and (3) presence of temporal nonstationarities in the flood peak records. Warm season convective systems are responsible for some of the largest floods in the area, in particular in Nebraska, Kansas, and Iowa. Spring events associated with snowmelt and rain‐on‐snow are common in the northern part of the study domain. Nonparametric tests are used to investigate the presence of abrupt and slowly varying changes. Change‐points rather than monotonic trends are responsible for most violations of the stationarity assumption. The abrupt changes in flood peaks can be associated with anthropogenic changes, such as changes in land use/land cover, agricultural practice, and construction of dams. The trend analyses do not suggest an increase in the flood peak distribution due to anthropogenic climate change. Examination of the upper tail and scaling properties of the flood peak distributions are examined by means of the location, scale, and shape parameters of the Generalized Extreme Value distribution.  相似文献   
986.
This paper examines the relationship between climate change awareness and household behavior by testing whether Al Gore's documentary An Inconvenient Truth caused an increase in the purchase of voluntary carbon offsets. I find that in the two months following the film's release, zip codes within a 10-mile radius of a zip code where the film was shown experienced a 50 percent relative increase in the purchase of voluntary carbon offsets. During other times, offset purchasing patterns for zip codes inside the 10-mile radius were similar to the patterns of zip codes outside the 10-mile radius. There is, however, little evidence that individuals who purchased an offset due to the film purchased them again a year later.  相似文献   
987.
This paper provides evidence of market power in the transportation of ethanol used in reformulated gasoline and alternative transportation fuels. I estimate a reduced form model for railroad route-level prices. My identification strategy instruments for railroad entry, controls for selection and explicitly models capacity constraints. A detailed understanding of this industry is important because U.S. environmental policies seek to substantially expand ethanol use. Evidence of market power may alter the types of policies pursued by lawmakers. I find that ethanol shipment prices are lower for more competitive routes. I also find evidence that railroads price discriminate based on environmental regulation at route destinations. Monopolist prices for shipments to carbon monoxide non-attainment areas are 3% higher than shipments to other destinations. This price premium falls sharply with increased competition. This suggests a perverse result where environmental regulation increases the price of a clean input.  相似文献   
988.
Managing wildlife diseases requires an understanding of disease transmission, which may be strongly affected by host population density and landscape features. Transmission models are typically fit from time-series disease prevalence data and modelled based on how the contact rate among hosts is affected by density, which is often assumed to be a linear (density-dependent transmission) or constant (frequency-dependent transmission) relationship. However, long-term time-series data is unavailable for emerging diseases, and this approach cannot account for independent effects of landscape. We developed a mechanistic model based on ecological data to empirically derive the contact rate-density relationship in white-tailed and mule deer in an enzootic region of chronic wasting disease (CWD) in Alberta, Canada and to determine whether it was affected by landscape. Using data collected from aerial surveys and GPS-telemetry, we developed empirical relationships predicting deer group size, home range size, and habitat selection to iteratively simulate deer distributions across a range of densities and landscapes. We calculated a relative measure of total per-capita contact rate, which is proportional to the number of other deer contacted per individual per unit time, for each distribution as the sum of pairwise contact rates between a target deer and all other individuals. Each pairwise contact rate was estimated from an empirical relationship developed from GPS-telemetry data predicting pairwise contact rates as a function of home range overlap and landscape structure. Total per-capita contact rates increased as a saturating function of density, supporting a transmission model intermediate between density- and frequency-dependent transmission. This pattern resulted from group sizes that reached an asymptote with increasing deer density, although this relationship was mediated by tree and shrub coverage in the landscape, such that in heavily wooded areas, the contact rate saturated at much lower densities. These results suggest that CWD management based on herd reductions, which require a density-dependent contact rate to be effective, may have variable effects on disease across a single management region. The novel mechanistic approach we employed for estimating effects of density and landscape on transmission is a powerful complement to typical data-fitting approaches for modelling disease transmission.  相似文献   
989.
Spatially and temporally distributed information on the sizes of biomass carbon (C) pools (BCPs) and soil C pools (SCPs) is vital for improving our understanding of biosphere-atmosphere C fluxes. Because the sizes of C pools result from the integrated effects of primary production, age-effects, changes in climate, atmospheric CO2 concentration, N deposition, and disturbances, a modeling scheme that interactively considers these processes is important. We used the InTEC model, driven by various spatio-temporal datasets to simulate the long-term C-balance in a boreal landscape in eastern Canada. Our results suggested that in this boreal landscape, mature coniferous stands had stabilized their productivity and fluctuated as a weak C-sink or C-source depending on the interannual variations in hydrometeorological factors. Disturbed deciduous stands were larger C-sinks (NEP2004 = 150 gC m−2 yr−1) than undisturbed coniferous stands (e.g. NEP2004 = 8 gC m−2 yr−1). Wetlands had lower NPP but showed temporally consistent C accumulation patterns. The simulated spatio-temporal patterns of BCPs and SCPs were unique and reflected the integrated effects of climate, plant growth and atmospheric chemistry besides the inherent properties of the C pool themselves. The simulated BCPs and SCPs generally compared well with the biometric estimates (BCPs: r = 0.86, SCPs: r = 0.84). The largest BCP biases were found in recently disturbed stands and the largest SCP biases were seen in locations where moss necro-masses were abundant. Reconstructing C pools and C fluxes in the ecosystem in such a spatio-temporal manner could help reduce the uncertainties in our understanding of terrestrial C-cycle.  相似文献   
990.
State-and-transition models (STMs) can represent many different types of landscape change, from simple gradient-driven transitions to complex, (pseudo-) random patterns. While previous applications of STMs have focused on individual states and transitions, this study addresses broader-scale modes of spatial change based on the entire network of states and transitions. STMs are treated as mathematical graphs, and several metrics from algebraic graph theory are applied—spectral radius, algebraic connectivity, and the S-metric. These indicate, respectively, the amplification of environmental change by state transitions, the relative rate of propagation of state changes through the landscape, and the degree of system structural constraints on the spatial propagation of state transitions. The analysis is illustrated by application to the Gualalupe/San Antonio River delta, Texas, with soil types as representations of system states. Concepts of change in deltaic environments are typically based on successional patterns in response to forcings such as sea level change or river inflows. However, results indicate more complex modes of change associated with amplification of changes in system states, relatively rapid spatial propagation of state transitions, and some structural constraints within the system. The implications are that complex, spatially variable state transitions are likely, constrained by local (within-delta) environmental gradients and initial conditions. As in most applications, the STM used in this study is a representation of observed state transitions. While the usual predictive application of STMs is identification of local state changes associated with, e.g., management strategies, the methods presented here show how STMs can be used at a broader scale to identify landscape scale modes of spatial change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号