首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   8篇
  国内免费   57篇
安全科学   7篇
废物处理   10篇
环保管理   27篇
综合类   97篇
基础理论   75篇
污染及防治   151篇
评价与监测   23篇
社会与环境   3篇
  2024年   1篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   11篇
  2018年   9篇
  2017年   13篇
  2016年   15篇
  2015年   14篇
  2014年   17篇
  2013年   123篇
  2012年   19篇
  2011年   18篇
  2010年   9篇
  2009年   14篇
  2008年   16篇
  2007年   14篇
  2006年   12篇
  2005年   14篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1983年   1篇
排序方式: 共有393条查询结果,搜索用时 559 毫秒
281.
This study aimed to investigate the residues, kinetics and dissipation patterns of kresoxim-methyl, (E)-methoxyimino[α-(o-tolyloxy)-o-tolyl]acetate, and trifloxystrobin, methyl(E)-methoxyimino-{(E)-α[1-(α,α,α-trifluoro-m-tolyl)ethylideneaminooxy]-o-tolyl}acetate”. A simple and sensitive liquid chromatography-ultraviolet detection (LC-UV) method combined with the ‘Quick Easy Cheap Effective Rugged and Safe' (QuEChERS) protocol was developed to quantify the levels of kresoxim-methyl and trifloxystrobin residues in citrus. More than 97% of the kresoxim-methyl and trifloxystrobin deposists gradually dissipated from the citrus peels within 15 days. The half-lives of kresoxim-methyl and trifloxystrobin in the peels were in the ranges of 2.63–2.66 d and 3.12–3.15 d, respectively, and the pattern of decline in the peels followed first-order kinetics. The kresoxim-methyl and trifloxystrobin residues in the pulp dissipated below the detectable level of 0.01 mg kg?1 after 9 days. Kresoxim-methyl and trifloxystrobin were easily decomposed (T1/2 < 30 d), and the observed dissipation patterns could support the application of these two fungicides in the postharvest storage of citrus fruits.  相似文献   
282.
Deltamethrin [(S)-cyano-3-phenoxybenzyl-cis-(1R,3R)-2,2-dimethyl) cyclo–propane carboxylate),1] labelled at gem-dimethyl groups of the cyclopropane ring was applied on two Egyptian soils at a level of 10 mg/kg soil for a laboratory incubation experiment under aerobic and anaerobic conditions. A steady decrease of soil extractable14C-residues, accompanied by a corresponding increase of non- extractable bound 14C-residues was observed over a 90-day incubation period. The percentage of evolved 14CO2 increased with time under aerobic and anaerobic conditions in both soils. The effect of deltamethrin on soil microorganisms as well as the counter effect of microorganisms on the insecticide was also investigated. As the incubation period increased, the inhibitory effect of the insecticide on the microorganisms decreased and the evolution of carbon dioxide depended on the applied dose. The nature of soil methanol soluble residues was determined by chromatographic analysis which revealed the presence of the parent insecticide as the main product in addition to four metabolites: 3-(2′,2′-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (II); 3-phenoxybenzaldehyde (III); 3-phenoxybenzoic acid (IV); 3-phenoxybenzyl alcohol (V).  相似文献   
283.
Abstract

13C-labelled cyprodinil was applied on 13C-depleted wheat plants with 27-fold field application rate. A control experiment applying same amounts of 14C-cyprodinil showed that main portions of the residues were detected in the cellulose (15% NER), hemicellulose (28.3% NER), and lignin fraction (23.3% NER). 16.7% were detected in water soluble polymers, 6% in both, pectin and protein fraction, and 4% in the starch containing fraction. Free cyprodinil was detectable by TLC in all fractions except lignin. A direct characterization of the residues in vivo by CP-MAS was not successful. Cell wall fractions were further analysed by liquid state NMR to determine the structure of the mobilized highly polymer/polar residues: Within lignin, where most of the residues were located at field application rate, neither intact cyprodinil nor its metabolites could not be detected. The 13C-label introduced was probably incorporated in the polymer as natural lignin monomers and thus are not considered as bound residues according to IUPAC definition.  相似文献   
284.
Abstract

Soil bound 14C‐labeled residues were released by four different physiological groups of microorganisms from an organic soil treated with 14C‐ring‐labeled prometryn [2‐(methylthio) ‐4,6‐bis(isopropylamino)‐s‐triazine]. The extent to which the different microbial populations released bound 14C residues (25–30% of the total bound 14C) from the Y‐irradiated soil after 28 days incubation did not differ considerably. Analysis of the extractable material from the incubated soil showed the presence of small amounts of the parent compound, and its hydroxy and mono‐N‐dealkylated analogues. Low level of 14CO2 (1.5–3.0% of the total bound 14C) was evolved from the microbial systems indicating ring cleavage of the released material as being a very minor reaction.  相似文献   
285.
Abstract

Broiler chickens and swine fed furazolidone in their diet were sacrificed, and samples of liver, kidney, skin/fat and muscle were harvested and analyzed for furazolidone residue. Chickens fed 200 g of furazolidone/ton of feed were withdrawn from treatment 21, 14, 7, 5, 3, or 0 days before slaughter. Birds withdrawn from medication more than 5 days prior to slaughter had no residues in any of the tissues sampled. One of the 12 birds in each of the 5 day and 3 day withdrawal groups had detectable residues in the skin/fat. Seven of the 12 birds in the 0 day withdrawal group had residues of <2 ppb in skin/fat samples. Chickens fed 400 g furazolidone/ton of feed were withdrawn from treatment 0 days before slaughter. Residues of 0.7 to 3.5 ppb were found in the skin of these birds; residues were not found in other tissues. Swine were fed 300 g furazolidone/ton of feed for 2 weeks or 150 g/ton for 5 weeks. They were withdrawn from treatment 10, 7, 5, 3, or 0 days before slaughter. Tissue samples taken from these swine did not contain detectable furazolidone residues.  相似文献   
286.
Abstract

Residues of five different pesticides applied to alfalfa seed crops were determined in the harvested seeds and in sprouts grown from these seeds. Although seeds are usually used for future production of alfalfa plants, some of these seeds may be sprouted for human food consumption. The pesticides studied — aldicarb (Temik®), chlorothalonil (Bravo®), chlorpyrifos (Lorsban®), methamidophos (Monitor®) and propargite (Comite®) — were applied at a normal usage rate and at two to three times that rate. Residues on the seeds and sprouts, if any, were insignificant at rates of application.  相似文献   
287.
The main aim of this study was to assess the impact of pesticidal residues on soil microbial and biochemical parameters of the tea garden soils. The microbial biomass carbon (MBC), basal (BSR) and substrate induced respirations (SIR), β -glucosidase activity and fluorescein diacetate hydrolyzing activity (FDHA) of six tea garden soils, along with two adjacent forest soils (control) in West Bengal, India were measured. The biomass and its activities and biochemical parameters were generally lower in the tea garden soils than the control soils. The MBC of the soils ranged from 295.5 to 767.5 μ g g? 1. The BSR and SIR ranged from 1.65 to 3.08 μ g CO2-C g? 1 soil h? 1 and 3.08 to 10.76 μ g CO2-C g? 1h? 1 respectively. The β -glucosidase and FDHA of the soils varied from 33.3 and 76.3 μ g para-nitrophenol g? 1 soil h? 1 and 60.5 to 173.5 μ g fluorescein g? 1h? 1respectively. The tea garden soils contained variable residues of organophosphorus and organochlorine pesticides, which negatively affected the MBC, BSR, SIR, FDHA and β -glucosidase activity. Ethion and chlorpyriphos pesticide residues in all the tea garden soils varied from 5.00 to 527.8 ppb and 17.6 to 478.1 ppb respectively. The α endosulfan, β endosulfan and endosulfan sulfate pesticide residues in the tea garden soils ranged from 7.40 to 81.40 ppb, 8.50 to 256.1 ppb and 55 to 95.9 ppb respectively. Canonical correlation analysis shows that 93% of the total variation was associated with the negative impact of chlorpyriphos, β and α endosulfan and endosulfan sulfate on MBC, BSR and FDHA. At the same time ethion had negative impact on SIR and β -glucosidase. Data demonstrated that the pesticide residues had a strong impact on the microbial and biochemical components of soil quality.  相似文献   
288.
The presence of pesticide residues in fresh vegetables and fruit have been qualitatively and quantitatively determined at the laboratories of the Regional Agency for Environmental Protection (ARPA), Division of the Province of Bologna. More than 1,700 samples have been tested by routine analyses. The possible risks for consumers have been evaluated by various parameters. The most important ones were: the amount of each residue; the respective ADI (Acceptable Daily Intake) limit; the contemporary presence of different residues; an estimation of the daily intake, based on the amount of fruit and vegetables consumed per person. It has been possible to evaluate that the daily intake of pesticide residues in the province of Bologna during the period 2003–06 resulted lower than the ADI limits concerning the vegetables. According to the information on fruit consumption the daily intake of omethoate (O,O-dimethyl S-methylcarbamoylmethyl phosphorothioate) resulted higher than its ADI limit, of dicofol (2,2,2-trichloro-1,1-bis(trichloromethyl)benzenemethanol) very close to the admitted limit, under the respective limits for all the other residues.  相似文献   
289.
290.
Abstract

A selective liquid chromatographic analytical method was studied for determination of two neonicotinoids, acetamiprid and imidacloprid, in tomato fruits under greenhouse conditions in Egypt. The fruits were extracted and cleaned up by QuEChERS method followed by HPLC determination. The method showed a good linearity with a determination coefficient (R2) of higher than 0.99 for the 0.0125–0.15 µg/mL concentration range. The method was validated using a blank tomato spiked at 5, 25 and 50 mg/kg and the recovery percentages were 83.71, 94.52 and 97.49% for acetamiprid and 88.59, 89.63 and 90.18% for imidacloprid, respectively. The rates of dissipation of both pesticides were studied and the preharvest intervals (PHIs) were calculated. Imidacloprid dissipated faster than acetamiprid and half-life periods were 1.30 and 2.07 days, respectively. Acetamiprid and imidacloprid residues were below the already established European maximum residue limits (EU MRLs) (0.5 mg/kg) 3 and 5 days after application, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号