首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   125篇
  国内免费   107篇
安全科学   163篇
废物处理   25篇
环保管理   190篇
综合类   471篇
基础理论   90篇
污染及防治   16篇
评价与监测   17篇
社会与环境   37篇
灾害及防治   18篇
  2024年   16篇
  2023年   33篇
  2022年   35篇
  2021年   38篇
  2020年   30篇
  2019年   32篇
  2018年   26篇
  2017年   36篇
  2016年   41篇
  2015年   40篇
  2014年   60篇
  2013年   57篇
  2012年   73篇
  2011年   88篇
  2010年   57篇
  2009年   37篇
  2008年   36篇
  2007年   41篇
  2006年   39篇
  2005年   37篇
  2004年   22篇
  2003年   13篇
  2002年   14篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1972年   2篇
排序方式: 共有1027条查询结果,搜索用时 15 毫秒
241.
   Using estimates of land suitable for restoration in woodlands, grasslands, and deserts, as well as estimates of the rate at which restoration can proceed, we estimate that carbon storage in these biomes can range up to 0.8 billion tons of carbon per year (Gt C/yr), for a combination of land management strategies. This corresponds to a reduction in atmospheric buildup of 0.5 Gt C/yr, which represents up to 15% of the average annual atmospheric carbon buildup in the next century, 3.5 Gt C/yr, assuming the IPCC 92d scenario. A global strategy for reducing atmospheric carbon dioxide concentration will require the implementation of multiple options. The advantage of carbon storage in restored drylands is that it comes as a side benefit to programs that are also justifiable in terms of land management.  相似文献   
242.
为了缓解日益严重的CO2浓度升高导致的温室效应等环境问题,针对各国CO2过量排放与温室效应逐渐加剧的现状,讨论传统CO2减排方法与CO2的捕获、储存与利用(CCSU)的优缺点和优势互补,论述针对大型CO2排放点的减排措施——CCSU的必要性。对CCSU进行系统的介绍和认识,并对CCSU所包含的各种捕获技术、储存技术以及利用技术的特点进行对比和分析,论述其适用范围、地域和经济因素。结合国外一些现有的应用CO2的先进技术和经验,对CO2的捕获与利用的联用作出分析和展望。尤其是CO2的化工利用具有广阔的研发和发展前景,CO2EOR(CO2提高采收率技术)在技术和经济上具有实际应用意义。为新型环保型能源体系的建设提供参考。  相似文献   
243.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   
244.
The simulation of the conjunctive use of a surface reservoir and a limestone aquifer is described. The potential yields from each of the sources are of the same order. An important feature of the aquifer is that if the pumpage is reduced, much of the excess water is lost through springs. Five different operating policies are considered which determine whether pumpage should be taken from the reservoir or aquifer. The total safe yields for the historic period 1961–1977 are estimated for each policy and their relative advantages and disadvantages are discussed. The simulation is also carried out for 100 years of generated data to discover the long term consequences.  相似文献   
245.
ABSTRACT: Since the early 1900's the Upper St. Johns River Basin, Florida, has been experiencing rapid agricultural development, through reclamation of the low-lying marshland by organized drainage districts, private land owners and corporations. These low-lying marsh areas, which constitute the floodplain, have been altered by the creation of levees, thereby reducing the natural storage capacity and permanently altering the regime of the system. This floodplain encroachment has resulted in both higher and lower water levels occurring in the upper basin area, and an increase in hydroperiod. This paper discusses the history and background of the basin accompanied by a hydrologic discussion, and suggests recommendations for a water management plan that could improve the overall operation and management of the Upper St. Johns River basin.  相似文献   
246.
ABSTRACT: California's courts have recently recognized the existence of underground aquifer storage rights that permit public agencies to (1) store imported waters in aquifers; (2) prevent others from expropriating that water; and (3) recapture the stored water when it is needed. The article describes the two appellate decisions that represent the common-law development of aquifer storage rights. Each decision related to separate aquifers that were subject to separate types of groundwater management programs. One decision involved an aquifer under the southeastern San Francisco Bay area that was managed under statutory authority and is entitled, Niles Sand and Gravel Co. v. Alameda County Water District 37 C.A.3d 924 (1974); cert. denied 419 US 869. The other decision involved an aquifer under Southern California's San Fernando Valley that was managed under judicial authority and is entitled, City of Los Angeles v. City of San Fernando 14 Cal.3d 199 (1975). The two decisions provide separate, but complimentary, public interest rationales for aquifer storage rights: (1) to protect water supplies necessary for the overlying community; and (2) to increase water supply efficiencies by using natural underground reservoirs wherever practicable. The Article reviews the relationship of aquifer storage rights to conventional groundwater rights and indicates aspects of the storage right that may need additional development.  相似文献   
247.
248.
ABSTRACT: The St. Johns River basin is the largest watershed entirely within the State of Florida, and is one of the few northward flowing rivers in the United States. The river basin contains 11,431 square miles, of which 9,430 square miles are drained by the river and its tributaries. The remainder drains into the Atlantic Ocean or the Intracoastal Waterway. Its largest sub-basin is the Oklawaha River basin, which has a drainage area of 2,870 square miles. Ground elevations range from sea level to 200 feet above mean sea level in the main river basin and as high as 300 feet above mean sea level in the Oklawaha River basin. This study was designed to investigate the surface water resources of the St. Johns River and the existing consumptive uses. The analysis revealed that the river is an extremely large and valuable resource which has been under-utilized and could play a much stronger role in serving the needs of the people in the basin.  相似文献   
249.
ABSTRACT: One of the most significant changes m the field of hydrology in the past few years has been the increase m demand for basic data resulting from a new awareness on the part of planners, developers and managers of the essential nature of such data. For many years data collection has been an onerous, routine operation, following which the data were processed and stored - either in publications or file drawers - and the job considered completed. Two developments have changed that picture: the realization that we are drastically altering OUT environment, and the advent of the computer. The first forced us into a recognition of our need for accurate basic data and the second provided a new methodology for handling and using it. The change is evidenced m many ways and numerous activities are underway at both State and Federal level for all facets of the acquisition and handling of water data. The collection of basic data still involves hard routine work and a conscientious-effort to maintain a high level of quality. Hopefully, recognition of the absolutely essential nature of an adequate data base will result in the continued enhancement of the basic data collector and the concomitant increase in support of his activities.  相似文献   
250.
ABSTRACT: Man is the one biological factor that can either make environment fit his needs or unknowingly ruin it. The major phases of the hydrologic cycle, in which man can interfere are: precipitation, storage and evaporation. A change m any one phase will generally cause modification to the other phases of the cycle: the only certainity is that the water balance will indeed balance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号