首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8769篇
  免费   750篇
  国内免费   2106篇
安全科学   967篇
废物处理   142篇
环保管理   1676篇
综合类   5062篇
基础理论   845篇
环境理论   4篇
污染及防治   811篇
评价与监测   508篇
社会与环境   1140篇
灾害及防治   470篇
  2024年   61篇
  2023年   176篇
  2022年   313篇
  2021年   324篇
  2020年   319篇
  2019年   281篇
  2018年   260篇
  2017年   405篇
  2016年   494篇
  2015年   513篇
  2014年   480篇
  2013年   597篇
  2012年   734篇
  2011年   676篇
  2010年   503篇
  2009年   460篇
  2008年   409篇
  2007年   640篇
  2006年   583篇
  2005年   549篇
  2004年   414篇
  2003年   414篇
  2002年   320篇
  2001年   248篇
  2000年   246篇
  1999年   184篇
  1998年   116篇
  1997年   131篇
  1996年   122篇
  1995年   107篇
  1994年   97篇
  1993年   81篇
  1992年   57篇
  1991年   46篇
  1990年   39篇
  1989年   30篇
  1988年   25篇
  1987年   27篇
  1986年   11篇
  1985年   14篇
  1983年   9篇
  1982年   9篇
  1981年   16篇
  1980年   16篇
  1979年   12篇
  1978年   12篇
  1976年   5篇
  1972年   9篇
  1971年   9篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
281.
Since the 1970s, the water fluxes to the sea of the Yellow River have declined significantly. Based on data of precipitation, air temperature, the measured and “natural” river flow, the water diversion and consumption, and the areas of erosion and sediment control measures over the drainage basin, water fluxes to the sea of the Yellow River are studied in relation with the influences of changing climate and human activities. The Yellow River basin can be divided into different water source areas; multiple regression indicates that the variation in precipitation over different water source areas has different effect on water fluxes to the sea. In the period between 1970 and 1997, averaged air temperature over the whole Yellow River increased by about 1.0°C, from 16.5°C to 17.5°C, a factor that is negatively correlated with the water yield of the Yellow River. Water diversion and consumption has sharply increased and resulted in a significant decline in the water fluxes to the sea. Since the 1960s, erosion and sediment control measures have been practiced over the drainage basin. This factor, to a lesser degree, is also responsible for the decrease in water fluxes to the sea. A multiple regression equation has been established to estimate the change in water fluxes to the sea caused by the changes in precipitation, air temperature, water diversion and consumption, erosion, and sediment control measures, indicating that the contribution of water diversion and consumption to the variation in annual water flux to the sea is 41.3%, that of precipitation is 40.8%, that of temperature is 11.4%, and that of erosion and sediment control measures is 6.5%.  相似文献   
282.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   
283.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
284.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   
285.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   
286.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
287.
吴超  李思贤 《安全》2019,40(9):18-25,5
为发展安全科学原理和给事故防控与调查提供新的方法,根据变化对系统安全的影响机制,开展安全降变原理及事故致因新模型研究。首先,提出安全降变原理并解析其内涵及研究意义。其次,基于安全降变原理,给出不同层级安全系统变化的分类实例,并对作业场所事故及其致因重新定义和分类。再次,构建基于安全降变原理的C-S-R事故致因新模型。最后,基于事故案例分析,验证所提出的C-S-R事故致因新模型与安全降变原理的有效性。结果表明,各级安全系统中自发或是受联动的变化超出系统的变化承受水平时,将导致事故的发生。经事故案例分析验证可知,安全降变原理及C-S-R事故致因新模型具有充分的实用性。  相似文献   
288.
Petroleum lubricating oils, used throughout the economy, are distinct among petroleum products in their capacity to be recovered and recycled at the end of their useful life. Used lubricating oil is regulated at the state and federal level because of concerns about environmental impacts arising from improper disposal, although rates of recovery are not known. We present a material flow analysis of lubricants through California's economy in the years 2007–2012. We introduce a novel technique for computing aggregate waste generation from a collection of hazardous waste manifest records, and apply it in order to determine a recovery rate for used oil and to estimate the quantity of oil managed informally in the state. The records also offer a detailed view of the fate of used oils after they are recovered. We find that around 62% of lubricants are recoverable at end of life, of which 70–80% is being recovered. This rate shows a slight downward trend. If the trend is accurate, measures should be taken to improve the performance of the used oil management system. Policy opportunities exist to reduce the quantity of oil managed informally through improving access to responsible used oil management methods. These include increasing the collection of used oil from industrial sources as well as “do it yourself” oil changes, expanding in-state reprocessing capacity, and promoting increased out-of-state reprocessing of used oil. Our methods introduce new possibilities to make use of direct observation in material flow analysis, potentially improving data availability and quality and increasing the relevance of material flow methods in policy applications.  相似文献   
289.
煤矿发生火灾后会生成大量有毒气体并产生火风压,烟气在火灾动力的影响下出现状态紊乱,研究煤矿火灾烟气流动传播过程对控制火情有着重要意义。基于国内外研究现状,对燃烧及风流特点进行分析,建立了煤矿火灾烟气流动数学模型,并利用CFD软件进行仿真。研究表明:无通风工况下的烟气为对称流动;随着风速增加,出口处温度降低,烟气向风流入口处的流速减小。  相似文献   
290.
IntroductionWith the development of industries and increased diversity of their associated hazards, the importance of identifying these hazards and controlling the Occupational Health and Safety (OHS) risks has also dramatically augmented. Currently, there is a serious need for a risk management system to identify and prioritize risks with the aim of providing corrective/preventive measures to minimize the negative consequences of OHS risks. In fact, this system can help the protection of employees’ health and reduction of organizational costs. Method: The present study proposes a hybrid decision-making approach based on the Failure Mode and Effect Analysis (FMEA), Fuzzy Cognitive Map (FCM), and Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) for assessing and prioritizing OHS risks. After identifying the risks and determining the values of the risk assessment criteria via the FMEA technique, the attempt is made to determine the weights of criteria based on their causal relationships through FCM and the hybrid learning algorithm. Then, the risk prioritization is carried out using the MOORA method based on the decision matrix (the output of the FMEA) and the weights of the criteria (the output of the FCM). Results: The results from the implementation of the proposed approach in a manufacturing company reveal that the score at issue can overcome some of the drawbacks of the traditional Risk Priority Number (RPN) in the conventional FMEA, including lack of assignment the different relative importance to the assessment criteria, inability to take into account other important management criteria, lack of consideration of causal relationships among criteria, and high dependence of the prioritization on the experts’ opinions, which finally provides a full and distinct risk prioritization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号