首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16324篇
  免费   1197篇
  国内免费   3714篇
安全科学   1234篇
废物处理   268篇
环保管理   4307篇
综合类   9419篇
基础理论   2111篇
环境理论   4篇
污染及防治   1210篇
评价与监测   1335篇
社会与环境   1058篇
灾害及防治   289篇
  2024年   61篇
  2023年   268篇
  2022年   416篇
  2021年   446篇
  2020年   515篇
  2019年   453篇
  2018年   429篇
  2017年   605篇
  2016年   741篇
  2015年   797篇
  2014年   784篇
  2013年   1217篇
  2012年   1155篇
  2011年   1275篇
  2010年   932篇
  2009年   941篇
  2008年   713篇
  2007年   1138篇
  2006年   1090篇
  2005年   860篇
  2004年   761篇
  2003年   764篇
  2002年   636篇
  2001年   526篇
  2000年   502篇
  1999年   415篇
  1998年   292篇
  1997年   276篇
  1996年   255篇
  1995年   225篇
  1994年   200篇
  1993年   181篇
  1992年   133篇
  1991年   107篇
  1990年   86篇
  1989年   83篇
  1988年   77篇
  1987年   69篇
  1986年   46篇
  1984年   47篇
  1983年   57篇
  1982年   59篇
  1981年   76篇
  1980年   80篇
  1979年   74篇
  1978年   50篇
  1977年   50篇
  1973年   44篇
  1972年   38篇
  1971年   58篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
为探明三峡支流水体富营养化频发与库岸消落带土壤氮素"源-库"关系转化之间的内在关系,采用分级浸提法,分析了三峡库区长江万州段干流、苎溪河支流、密溪河支流消落带落干期土壤可转化态氮含量和分布特征.结果表明,与三峡库区万州段干流相比,支流消落带落干期土壤有机质和总氮含量较高,而阳离子交换量(CEC)和p H值较低.三峡干支流消落带土壤可转化态氮(TF-N)以OSF-N(有机态和硫化物结合态)为主,且含量上OSF-NIMOF-N(铁锰氧化物结合态氮)IEF-N(离子交换态氮)CF-N(碳酸盐结合态氮);而空间分布上,TF-N表现为:密溪河苎溪河长江干流,4种TF-N形态中IEF-N和OSF-N在干支流间无显著差异,而CF-N和IMOF-N分布与TF-N相反,是造成干支流消落带TF-N差异的主要因素.  相似文献   
982.
乌江中上游段河水主要离子化学特征及控制因素   总被引:12,自引:10,他引:2  
开展人类活动影响下乌江中上游段河流水化学特征研究,有助于流域地表水资源有效开发利用和保护.本文采用主成分分析法对乌江中上游段的六冲河、三岔河、猫跳河、清水河的主要离子化学特征及控制因素进行了定量评价.结果表明,乌江上游段4条河流优势阳离子均为Ca~(2+)、Mg~(2+),两者占全部阳离子的70%以上,阴离子以HCO~-_3、SO~(2-)_4为主,两者占总阴离子的85%以上.与乌江1999年水化学数据相比,本次样品的阴阳离子浓度出现了明显增加,主要表现在NO~-_3、SO~(2-)_4等受人为活动影响显著的离子方面.受流域碳酸盐岩地层的控制,4条河流水化学类型以HCO_3~-Ca为主,少部分样点为HCO_3·SO_4-Ca型,反映出部分样点可能受到人类源的SO~(2-)_4影响.河水中Na~+、K~+、Cl~-主要来源于大气输入,Ca~(2+)、HCO~-_3、Mg~(2+)主要来源于碳酸盐岩的溶解;NO~-_3和SO~(2-)_4主要来源于人为活动.主成分分析法和相关分析得出:六冲河、三岔河、清水河上游水化学成分主要受大气降水及碳酸盐岩的溶解因子的控制,向下游受人为活动因子影响均增强;猫跳河上游、下游水化学组成主要受大气降水及碳酸盐岩的溶解控制,而中游湖泊受人为活动影响明显.清水河支流南明河中下游水化学组成主要受人为活动因子控制.  相似文献   
983.
粤桂水源地有机氯农药的污染特征及生态风险   总被引:2,自引:1,他引:1  
利用固相萃取-气相色谱-质谱联用技术(SPE-GC-MS)检测了粤桂水源地7个采样点水样中16种有机氯农药(OCPs)的浓度,分析了研究区OCPs的污染特征;利用BurrⅢ型分布构建了8种OCPs的物种敏感度分布曲线,并计算出不同OCPs对淡水水生生物的HC5(hazardous concentration for 5%species)值,最后应用安全阈值法评价了OCPs对水生生物的生态风险.结果表明,OCPs的浓度在6.64~34.19 ng·L~(-1)之间,平均值为16.76 ng·L~(-1),HCHs和DDTs及其降解产物在污染物中的贡献比例较大.HCHs主要来自家庭杀虫剂中的林丹,DDTs主要来自三氯杀螨醇的污染或历史残留.脊椎动物对OCPs的耐受性高于无脊椎动物,α-硫丹对水生植物和微生物的影响较大,p,p'-DDT对脊椎动物和无脊椎动物的影响较大.粤桂水源地OCPs对水生生物没有显著的生态风险,但DDTs和α-硫丹对水生生物存在较高的潜在风险,应加以重视.  相似文献   
984.
扰动对悬浮颗粒物粒径及上覆水中磷形态分布的影响   总被引:5,自引:4,他引:1  
郭俊锐  李大鹏  刘焱见 《环境科学》2016,37(4):1422-1426
为了探讨底泥扰动下上覆水中悬浮物粒径分布规律及该分布规律对水体中溶解性形态磷的影响,以太湖梅梁湾上覆水和沉积物作为实验对象,开展室内模拟实验.结合乌氏粒级标准分析了扰动下的水体中粒径变化情况以及上覆水中不同磷形态的变化规律.结果表明,扰动后的水体中,悬浮物粒径分布发生明显变化,其中小粒径颗粒(0~10μm)、中粒径颗粒(10~20μm)、大粒径颗粒(≥20μm)的平均占比分别升高、降低、不变.说明中小粒径颗粒物质有向大粒径转化的趋势.另外,在磷形态方面,随着粒径分布的周期性变化,DTP/TP、DIP/TP存在同样的周期性上升规律,数据显示DTP、DIP的变化并不明显,这说明扰动导致悬浮颗粒物对于磷的持留能力提高.另一方面,扰动下DTP/TP和DIP/TP平均值分别为19%和13%,其远低于对照实验(80%和69%),说明扰动引起的小粒径聚集与絮凝成大粒径颗粒的现象有利于上覆水中溶解性形态磷的吸附与沉降,并转化成颗粒态磷,进而延缓水体富营养化的发展进程.  相似文献   
985.
污泥水是污水处理厂污泥浓缩、稳定、脱水等环节产生的废水,具有污染物浓度高、成分复杂的特点.采用三维荧光光谱和红外光谱研究了污泥水中溶解性有机物(DOM)的光谱特性.污泥水荧光性DOM(FDOM)可利用平行因子分析划分为6个荧光组分,分别为类蛋白质组分C1(275/355 nm)、C4(235/350 nm)和C6(275/305 nm),及类腐殖酸组分C2(250,340/440nm)、C3(320/380 nm)和C5(250/465 nm).重力浓缩和机械浓缩污泥水中COD与所有类腐殖酸组分均正显著相关(P0.01),类蛋白质组分对其影响不大.离心脱水污泥水中组分C1、C4和C5含量明显上升.深度脱水污泥水中FDOM荧光峰位置和强度与其它污泥水存在显著差异,C3和C6分别较离心脱水污泥水升高15.63和7.30倍.与浓缩污泥水相比,离心脱水污泥水中多糖和腐殖酸吸收峰增强,而深度脱水污泥水中蛋白质大量释放,金属离子会与腐殖酸和蛋白质络合引起DOM结构变化.  相似文献   
986.
硫铁比对再生水深度脱氮除磷的影响   总被引:2,自引:2,他引:0  
为了考察硫铁比对反硝化脱氮同步除磷效果的影响,进行了不同硫铁比的反硝化脱氮除磷静态实验,并对复合填料系统反硝化脱氮同步除磷作用进行了分析.结果表明,硫铁复合填料的脱氮除磷效果均显著高于单一填料;硫铁比是影响复合填料反硝化脱氮除磷效果的一个关键因素,当硫铁比(体积比)大于等于1∶1时,TN、TP去除率分别达到了85%和97%以上.复合填料脱氮除磷过程均满足二级动力学方程,系统脱氮作用主要依赖于异养反硝化和硫自养反硝化过程,而除磷主要由于海绵铁腐蚀产生的化学除磷作用.  相似文献   
987.
为评价骆马湖水体中药品和个人护理品(PPCPs)的污染水平、空间分布特征及生态风险,利用高效液相色谱-串联质谱测定了骆马湖水体中22个采样点的32种PPCPs.结果表明,骆马湖表层水体中共检出了23种PPCPs,总浓度范围为892~1 536 ng·L~(-1),其中浓度最高的为诺氟沙星(256~707 ng·L~(-1)),其次是酮洛芬(85~438 ng·L~(-1))、安赛蜜(101~290 ng·L~(-1))及萘普生(1.9~112 ng·L~(-1)).不同采样位点的PPCPs浓度存在一定的空间差异,呈现湖东北部地区较高,西南部地区较低的趋势.房亭河入湖口处PPCPs浓度较高,嶂山闸出湖口处浓度较低.对13种药物类PPCPs生态风险评价结果表明,诺氟沙星RQs为0.26~0.72,对于骆马湖水生生态系统表现为中风险,吉非罗齐在大部分采样点RQs0.01,表现为低风险,其余的化合物RQs0.01未表现出生态环境风险.采用简单叠加模型计算PPCPs的联合毒性风险熵范围为0.29~0.75,整体上看,骆马湖PPCPs对于水生生物表现出中风险.对6种PPCPs的人体健康风险结果表明,RQs均小于1,表明骆马湖PPCPs对人体健康无直接风险.  相似文献   
988.
太湖西岸河网沉积物中重金属污染特征及风险评价   总被引:6,自引:5,他引:1  
边博  周燕  张琴 《环境科学》2017,38(4):1442-1450
为研究太湖西岸河网沉积物中重金属污染特征及风险,调查了丰-平-枯3个水期19个点位8种重金属的含量,结果表明,沉积物中重金属浓度顺序为ZnCrCuPbNiAsCdHg,其中Cd、Cu、Zn、Pb、Ni明显高于其环境背景值,除As外,其余7种重金属平水期含量高于丰水和枯水期.地累积指数(I_(geo))和潜在生态指数(RI)评价表明,研究区沉积物中Cd属于中等污染程度和中等生态风险,Cd对RI贡献率为35%,重金属生物毒性不利影响评价值(mP EC-Q)范围为0.12~0.76,平均值0.30,表明研究区发生生物毒性不利影响的可能性为15%~29%,工业与生活混合区点位S2从污染程度、生态风险、生物毒性不利影响和主成分评价的污染及风险均最大,表现出多种重金属的协同污染,这与其周围污染排放特征一致,为该区域河流沉积物中重金属污染控制提供依据.  相似文献   
989.
丁洋  黄焕芳  李绘  罗杰  郑煌  孙焰  杨丹  张原  祁士华 《环境科学》2017,38(4):1431-1441
红树林湿地对保护海岸生态环境起着重要作用,为研究有机氯农药(OCPs)在广州南沙红树林湿地水体和沉积物中的残留水平、来源和生态风险,于2015年3月采集该地区10个表层水体样品和7个表层沉积物样品,并采用GC-ECD测定其中OCPs的含量.结果表明,水体中OCPs含量为1.89~90.19 ng·L~(-1),平均值为30.16 ng·L~(-1);沉积物中OCPs含量为3.10~16.02 ng·g~(-1),平均值为8.58 ng·g~(-1).与其他河口、海湾地区相比,研究区有机氯农药污染处于中等水平.研究区水体和沉积物间HCHs和DDTs的分配系数平均值分别为857和368;在分配系数较高的区域,沉积物成为水体二次污染源的潜力较大.来源分析表明,研究区水体和沉积物中近期仍存在HCHs和DDTs输入,HCHs主要来源于林丹的使用,DDTs来源于三氯杀螨醇与工业DDT的混合输入;与水体相比,沉积物中的OCPs可能包含更多历史残留组分.风险评价结果显示,水体中OCPs的生态风险较小,但沉积物中OCPs存在较高的生态风险,可能危害红树林生态系统.  相似文献   
990.
河南某市驾校地表灰尘多环芳烃组成、来源与健康风险   总被引:5,自引:4,他引:1  
采集河南省某市29所驾校的地表灰尘样品,应用气相色谱-质谱联用仪(GC-MS)测定样品中16种优控PAHs含量,用终生致癌风险增量模型(ILCR)评价灰尘PAHs不同暴露情景下(情景1、2、3分别为驾校工作5 a、10 a和20 a)的健康风险,用比值法、成分谱法和主成分因子载荷法揭示PAHs来源.结果表明,驾校灰尘ΣPAHs含量在198.21~3 400.89μg·kg-1之间,平均908.72μg·kg-1.单体PAHs含量较高的是萘、菲、蒽、荧蒽,含量最低的是二苯并[a,h]蒽,低环PAHs占ΣPAHs的55.79%,高环占44.21%.3种情景下的平均健康风险为情景3(3.71×10-7)情景2(1.85×10-7)情景1(9.27×10-8),只有一个驾校(J11)在情景3存在潜在健康风险,其他情景下均无风险.皮肤接触灰尘是最主要的PAHs暴露途径,其占总风险的64.21%;其次是误食途径,占总风险的33.04%;吸入途径可忽略不计.驾校灰尘PAHs主要来源为化石燃料不完全燃烧源和混合源,农田区驾校灰尘PAHs的柴油/天然气动力车排放源、燃煤源和汽油车排放源贡献率分别为56.44%、26.55%和17.01%,工业区驾校混合源、汽油车和炼焦/燃煤排放源贡献率分别为76.26%、22.85%和0.89%,混合区驾校燃煤源、天然气/柴油动力车排放源和汽油车排放源的贡献率分别为45.57%、45.41%和9.02%.灰尘PAHs含量及健康风险与其周边环境、前期土地利用状况密切相关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号