首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   60篇
  国内免费   244篇
安全科学   27篇
废物处理   10篇
环保管理   22篇
综合类   484篇
基础理论   94篇
污染及防治   100篇
评价与监测   49篇
社会与环境   6篇
灾害及防治   1篇
  2024年   11篇
  2023年   28篇
  2022年   24篇
  2021年   35篇
  2020年   28篇
  2019年   26篇
  2018年   30篇
  2017年   23篇
  2016年   24篇
  2015年   27篇
  2014年   41篇
  2013年   30篇
  2012年   39篇
  2011年   37篇
  2010年   33篇
  2009年   23篇
  2008年   44篇
  2007年   24篇
  2006年   27篇
  2005年   24篇
  2004年   22篇
  2003年   32篇
  2002年   16篇
  2001年   11篇
  2000年   11篇
  1999年   11篇
  1998年   27篇
  1997年   14篇
  1996年   12篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
排序方式: 共有793条查询结果,搜索用时 15 毫秒
701.
不同电子受体反硝化过程中C/N对N2O产量的影响   总被引:7,自引:3,他引:4  
试验采用SBR反应器,分别考察了不同C/N条件下,以硝酸盐和亚硝酸盐为电子受体的反硝化过程中N2O产生情况.投加乙醇作为反硝化碳源,以硝酸盐为电子受体时调节C/N分别为0、 1.2、 2.4、 3.5、 5.0和20,以亚硝酸盐为电子受体时调节C/N分别为0、 1.8、 2.4、 3.0、 4.3、 5.2、 6.6和20.6.结果发现,以亚硝酸盐为电子受体时,最佳C/N为3.0,此时N2O产生量为0.044 mg·L-1;以硝酸盐为电子受体时,最佳C/N为5.0,此时N2O产生量为0.135 mg·L-1,是以亚硝酸盐为电子受体时的3倍.电子受体类型不同时,N2O产生量的变化趋势类似:在碳源严重不足时,反硝化率和N2O产生量均很低;碳源相对不足时N2O产生量增加;C/N过大时,虽然反硝化速率很快,但N2O产量也急剧增大.可见,与全程硝化反硝化工艺相比,短程硝化反硝化工艺可节省40%碳源,且控制C/N=3,其反硝化过程产生的N2O远少于全程反硝化.  相似文献   
702.
硝酸盐污染饮用水的去除技术研究进展   总被引:2,自引:0,他引:2  
近年来,世界上许多地区的饮用水硝酸盐污染日益严重,因为饮用水中的硝酸盐易导致"蓝婴综合症"而使其倍受关注。本文阐述了地下水硝酸盐氮的化学、物理及生物去除技术的最新研究进展,探讨了其今后的研究方向。  相似文献   
703.
QuAAtrO连续流动分析仪测定海水中营养盐   总被引:1,自引:0,他引:1  
实验研究QuAAtro测定海水四项营养盐的精密度、检出限和准确度,并与手动分析进行比对试验。结果表明:QuAAtro分析海水营养盐具有高精密度、低检出限和较高准确度;和手动分析没有明显的差异却具有速度快、消耗少的特点。  相似文献   
704.
薛松  张梦竹  李琳  刘俊新 《环境科学》2018,39(3):1357-1364
伴随硝酸盐还原的甲烷厌氧氧化是协同减少环境中硝酸盐及甲烷的有效途径.利用实验室废水处理厌氧污泥、污水处理厂厌氧污泥和填埋场覆土驯化富集硝酸盐还原型甲烷厌氧氧化菌群.考察菌群的甲烷氧化效果,结果发现接种污水处理厂厌氧污泥体系甲烷转化量最大,为0.05 mg·d-1.微生物群落结构分析显示,该体系中甲烷微菌和甲烷八叠球菌是甲烷氧化菌,假单胞菌、梭状芽胞杆菌和热单胞菌参与了硝酸盐的还原反应.硝酸盐的量影响甲烷的转化率及菌群结构.当硝酸盐浓度为200 mg·L-1时,体系中的硝酸盐还原菌为假单胞菌和梭状芽胞杆菌;浓度增加至500 mg·L-1时,硝酸盐还原菌则是假单胞菌和热单胞菌.同时,甲烷转化率增加34.7%.研究结果为该菌群应用于含甲烷废气与含硝酸盐废水的协同处理提供科学依据.  相似文献   
705.
建立了菜园系统中施氮量ρA(N)土壤水分w(H2O)(以占田间最大持水量的百分数表示)土壤肥力w(RAHN)(以土壤还原碱解N(RAHN)水平表示)3因素影响菠菜植株NO3-N含量(w(NO3-N)的三元二次数学模型,模型分析和盆栽,微区及大田验证试验结果表明:3因素对菠菜植株w(NO3-N)影响的顺序是:ρA(N)〉w(RAHN)〉w(H2O),既能使菠菜高产,又能使植株w(NO3-N)达到国颁  相似文献   
706.
通过田间小区试验和室内测定,研究了有机肥与化肥以不同比例配合施用对小白菜硝酸盐和亚硝酸盐含量以及土壤硝酸盐含量的影响。结果表明:有机肥与化肥配合施用可以明显降低小白菜硝酸盐含量,减少硝酸盐在土壤剖面中向下淋溶,尤以有机肥与化肥施用比例为1∶1(质量比)时小白菜产量较高,体内硝酸盐含量较低,土壤下层的硝酸盐含量也较低,达到蔬菜高产优质,生态环境清洁健康的目标。  相似文献   
707.
为揭示氧化还原介体(ROMs)对萘厌氧降解的强化作用,以萘为唯一碳源富集到中温萘厌氧降解菌群.通过Illumina MiSeq测序对接种污泥和富集培养物进行了细菌群落结构解析,并考察了固定化蒽醌-2,6-二磺酸(AQDS)、蒽醌-2-磺酸(AQS)和腐殖酸强化萘厌氧降解的特征.Illumina MiSeq测序结果表明,PseudomonasThauera、和Georgfuchsia是该富集培养物中的优势萘降解菌,其相对丰度分别为52.4%、13.8%和17.6%.在污泥接种量为0.23g/L和萘初始浓度10mg/L条件下,富集菌群9d内对萘的降解率约为64%.ROMs强化试验结果表明,3种ROMs对萘的厌氧降解均有一定的促进作用.其中,AQDS的强化效果最为显著,当AQDS浓度为0.8mmol/L,培养至第7d时,萘的去除率为92.0%,比同期的对照组高1.2倍.此外,硝酸盐对ROMs强化萘厌氧降解的影响研究结果表明,在NaNO3浓度为0~0.8g/L范围内,萘的降解速率随着硝酸盐浓度增加呈现先增加后降低的趋势.当NaNO3浓度为0.6g/L时,萘的去除率在第6d就达到了91.0%,比对照组提高了15.2%.由此可见,在厌氧条件下添加适量硝酸盐可提高ROMs对萘降解的强化效果.  相似文献   
708.
硝酸盐是氮循环的中间产物.不稳定。根据水环境条件,可被氧化成硝酸盐,也可被还原为氨,硝酸盐在无氧环境中也可受微生物作用而还原为亚硝酸盐。亚硝酸盐可使人体正常的血红蛋白(低铁血红蛋白)氧化成高铁血红蛋白,发生高铁血红蛋白症,失去血红蛋白在体内运送氧的能力,出现组织性缺氧症状。亚硝酸盐可与仲胺类反应生成具有致癌性的亚硝胺类物质。某些深层地下水硝酸盐含量较高。  相似文献   
709.
从时空角度对岩溶区不同赋存条件水体进行研究,目的为掌握无机三氮变化规律、探究影响其转换的环境条件,为喀斯特山区水资源保护与利用提供理论依据。采用标准方法检测水体氨氮、亚硝酸盐氮、硝酸盐氮、DO、CODcr、TP、TN等相关指标,研究表明:①自然环境越是相对封闭,三种无机氮形态总体年内变幅也越小,其中亚硝酸盐氮表现最为显著。②赋存封闭的地下水体氨氮、亚硝酸盐氮与硝酸盐氮含量依次是未检出、0. 006和1. 469 mg/L,其浓度依次增高的特点与亚热带喀斯特山区地层溶蚀孔隙和漏斗等地貌形态的充分发育和淋溶土对氨氮的吸附作用是密切关联的。对于该水体亚硝酸盐氮,初秋时节出现浓度峰值,与夏季农业施肥与土壤下渗补给存在2~3个月时间滞后有关。③地表半开放水体清荷园氨氮和亚硝酸盐氮也表现为夏季含量低的特点。低温影响到AOB活性则成为亚硝酸盐氮冬季含量低的主导因素。春秋季气温回升(相比冬季)而降水不大(相比夏季),故各出现一个峰值。其硝酸盐氮曲线夏季仍然平稳,表征NOB增殖的瓶颈因素不是温度,而与溶解氧有关。④地表开放水体流仓桥河段夏季氨氮浓度低主要与降水稀释和水生植物对氨氮有最大吸收偏好有关。夏季陡变的自然环境条件(栖息环境突变、碳源不足等)和NOB自身适应环境能力差等因素,都会造成其增殖受限、硝化受阻而亚硝酸盐氮累积现象的发生。表现为亚硝酸盐氮峰值时节基本对应着硝酸盐氮低谷时段。且地表径流如要激发NOB活性,DO和环境温度的阈值分别应在4 mg/L和10℃以上。  相似文献   
710.
采用实地调查与模拟实验相结合的方法,研究不同施氮水平对地表水及土体中硝态氮迁移和累积的影响,旨在为减轻硝酸盐对滇池环境的威胁提供科学依据.结果表明,流域内农田排水中氮污染负荷高、氮肥投入过量及灌水频繁是造成研究区内土壤硝酸盐淋洗污染地下水的主要原因;土壤中NO3--N累积量与氮肥施用量在生菜的苗期呈极显著正相关(相关系数R0.01=0.9687**,**表示极显著线性相关),而在结球期呈显著正相关(R0.05=0.887*,*表示显著线性相关);在生菜整个生育期里,NO3--N沿土壤剖面垂直迁移至土壤深层,导致下层土壤的NO3--N含量高于上层土壤;生菜在苗期NO3--N淋失量较大,对地下水污染的风险高;高施氮强度与低施氮强度相比,氮素更易流失;频繁灌溉促使NO3--N随水向深层土壤迁移累积.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号