A new analytical method using accelerated solvent extraction was developed for the determination of 10 particle-associated polar and semipolar pesticides. In addition, six deuterated analogues of the target compounds were evaluated as internal standards. The method yielded acceptable accuracy (73–103% recovery) and precision (<25% relative standard deviation) for eight compounds. Using size exclusion chromatography (SEC) as cleanup step resulted in higher recoveries compared to solid phase extraction (SPE) cleanup.
Deuterated standards with 10 or more deuterium atoms performed well as internal standards concerning similar recovery and correlation with the target analytes.
The method was employed to extract particle-associated pesticides from 16 streams located in an area with intense agriculture in France. Acetochlor, pirimicarb, tebuconazole, fenpropidin, -endosulfan and chlorfenvinphos were detected at concentrations up to 1 mg kg−1 dry weight. A comparison with aquatic toxicity data indicated potential risk to the benthic fauna exposed to these concentrations of pirimicarb, -endosulfan and chlorfenvinphos.
We suggest that the method presented here be used for the extraction and quantitation of particle-associated polar pesticides. 相似文献
Identifying source information after river chemical spill occurrences is critical for emergency responses. However, the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated. To fill this gap, stochastic analysis approaches, including a regional sensitivity analysis method, identifiability plot and perturbation methods, were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework. Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules. For example, the release load can be most easily inverted, and the source location is responsible for the largest uncertainty among the source parameters. The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty. The differences among the different objective functions are smaller for instantaneous release than for continuous release cases. Small monitoring errors affect the inversion results only slightly, which can be ignored in practice. Interestingly, the estimated values of the release location and time negatively deviate from the real values, and the extent is positively correlated with the relative size of the mixing zone to the objective river reach. These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.
With increasing public concerns for agrochemicals and their potential movement in the ecosystem, very sensitive, selective and precise methods for the analysis of pesticides are needed. Because these substances are present usually at trace levels, the extraction and preconcentration steps are so far essential for their detection. Discoveries of novel nanomaterials with unique properties have significant impact on their use also in extraction techniques. This overview reports the recent application of carbon nanotubes in the analysis of pesticides. The largest numbers of reported applications of carbon nanotubes concern their role as a sorbent materials in solid-phase extraction and microextraction techniques. 相似文献