首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   19篇
  国内免费   1038篇
安全科学   2篇
环保管理   2篇
综合类   1061篇
基础理论   1篇
污染及防治   3篇
社会与环境   1篇
灾害及防治   1篇
  2023年   280篇
  2022年   255篇
  2021年   310篇
  2020年   198篇
  2019年   8篇
  2018年   4篇
  2015年   1篇
  2012年   2篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
  2000年   1篇
  1993年   1篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
191.
Volatile organic compounds (VOCs) with high toxicity and carcinogenicity are emitted from kinds of industries, which endanger human health and the environment. Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency. In recent years, activated carbons, zeolites, and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity. However, the hydrophilic nature and low desorption rate of those materials limit their commercial application. Furthermore, the adsorption capacities of VOCs still need to be improved. Porous organic polymers (POPs) with extremely high porosity, structural diversity, and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption. This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs. Moreover, the mechanism of competitive adsorption between water and VOCs on the POPs was discussed. Finally, a concise outlook for utilizing POPs for VOCs adsorption was discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications.  相似文献   
192.
The discharge of slau ghterhouse wastewater(SWW) is incre asing and its wastewater has to be treated thoroughly to avoid the eutrophication.The hybrid zeolite-based ion-exchange and sulfur autotrophic denitrification(IX-AD) process was developed to advanced treat SWW after traditional secondary biological process.Compared with traditional sulfur oxidizing denitrification(SOD),this study found that IX-AD column showed:(1) stronger ability to resist NO3-pollution load,(2) low...  相似文献   
193.
Oxidation remediation is a commonly used technology for PAHs contaminated soil presently,but the overestimate of efficiency due to ongoing remediation by residual oxidants during extraction and testing has not been paid enough attention.In this study,persulfate was activated by Fe(Ⅱ) to inve stigate the effects of residual oxidants on PAHs removal during detection process and the elimination effects of adding Na2 SO3 and extending sampling time on residual oxidants.Results ...  相似文献   
194.
Photocatalytic process represents a promising approach to overcome the pollution challenge associated with the antibiotics-containing wastewater. This study provides a green, efficient and novel approach to remove cephalosporins, particularly cefoperazone sodium (CFP). Bi4O5Br2 was chosen for the first time to systematically study its degradation for CFP, including the analysis of material structure, degradation performance, the structure and toxicity of the transformation products, etc. The degradation rate results indicated that Bi4O5Br2 had an excellent catalytic activity leading to 78% CFP removal compared with the pure BiOBr (38%) within 120 min of visible light irradiation. In addition, the Bi4O5Br2 presents high stability and good organic carbon removal efficiency. The effects of the solution pH (3.12 - 8.75) on catalytic activity revealed that CFP was mainly photocatalyzed under acidic conditions and hydrolyzed under alkaline conditions. Combined with active species and degradation product identification, the photocatalytic degradation pathways of CFP by Bi4O5Br2 was proposed, including hydrolysis, oxidation, reduction and decarboxylation. Most importantly, the identified products were all hydrolysis rather than oxidation byproducts transformed from the intermediate of β-lactam bond cleavage in CFP molecule, quite different from the mostly previous studies. Furthermore, the final products were demonstrated to be less toxic through the toxicity analysis. Overall, this study illustrates the detailed mechanism of CFP degradation by Bi4O5Br2 and confirms Bi4O5Br2 to be a promising material for the photodegradation of CFP.  相似文献   
195.
为给安全疏散研究提供综合性的参考,从CNKI和Web of Science收录的2010-2020年核心期刊中整理出关于安全疏散的研究文献,应用VOSviewer软件分别对国内外研究文献的发表数量、关键词、作者等进行了计量分析,并类比其他应用此方法的研究来验证结果的有效性.结果表明:国内针对安全疏散的相关文献年度发表数...  相似文献   
196.
Assisted natural remediation (ANR) has been highlighted as a promising, less expensive, and environmentally friendly solution to remediate soil contaminated with heavy metals. We tested the effects of three amendments (10% compost, C; 5 or 15% phosphate sludge, PS5 and PS15; and 5 or 15% marble waste, MW5 and MW15) in combination with microorganism inoculation (rhizobacteria consortium alone, mycorrhizae alone, and the two in-combination) on alfalfa in contaminated soil. Plant concentrations of Zn, Cu, and Pb were measured, along with proline and malondialdehyde production. The microbiological and physicochemical properties of the mining soil were evaluated. Application of the amendments allowed germination and promoted growth. Inoculation with the rhizobacteria consortium and/or mycorrhizae stimulated plant growth. PS and MW stimulated the production of proline. Inoculation of alfalfa with the rhizobacteria-mycorrhizae mixture and the application of MW allowed the safe cultivation of the legume, as shown by the low concentrations of metals in plant shoots. Zn and Pb concentrations were below the limits recommended for animal grazing and accumulated essentially in roots. Soil analyses showed the positive effect of the amendments on the soil physicochemical properties. All treatments increased soil pH (around 7), total organic carbon, and assimilable phosphorus content. Notably, an important decrease in soluble heavy metals concentrations was observed. Overall, our findings revealed that the applied treatments reduced the risk of metal-polluted soils limiting plant growth. The ANR has great potential for success in the restoration of polymetallic and acidic mining soils using the interaction between alfalfa, microorganisms, and organo-mineral amendments.  相似文献   
197.
Biogenic volatile organic compounds (BVOCs) in the atmosphere play important roles in the formation of ground-level ozone and secondary organic aerosol (SOA) in global scale and also in regional scale under some condition due to their large amount and relatively higher reactivity. In places with high plant cover in the tropics and in China where air pollution is serious, the effect of BVOCs on ozone and secondary organic aerosols is strong. The present research aims to provide a comprehensive review about the emission rate, emission inventory, research methods, the influencing factors of BVOCs emissions, as well as their impacts on atmospheric environment quality and human health in recent years in Asia based on the summary and analysis of literatures. It is suggested to use field direct measurement method to obtain the emission rate and model method to calculate the emission amount. Several recommendations are given for future investigation and policy development on BVOCs emission.  相似文献   
198.
In this study, a high-efficiency cationic flocculant, P(DAC-MAPTAC-AM), was successfully prepared using UV-induced polymerization technology. The monomer Acrylamide (AM): Acryloxyethyl Trimethyl ammonium chloride (DAC): methacrylamido propyl trimethyl ammonium chloride (MAPTAC) ratio, monomer concentration, photoinitiator concentration, urea content, and cationic monomer DAC:MAPTAC ratio, light time, and power of high-pressure mercury lamp were studied. The characteristic groups, characteristic diffraction peaks, and characteristic proton peaks of P(DAC-MAPTAC-AM) were confirmed by fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), 1H nuclear magnetic resonance spectrometer (1H NMR), and scanning electron microscopy (SEM). The effects of dosage, pH value, and velocity gradient (G) value on the removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol by poly aluminum ferric chloride (PAFC), P(DAC-MAPTAC-AM), and PAFC/P(DAC-MAPTAC-AM) in the flocculation treatment of coal chemical wastewater were investigated. Results showed that the optimal conditions for the flocculation of coal chemical wastewater using P(DAC-MAPTAC-AM) alone are as follows: dosage of 8–12 mg/L, G value of 100–250 s ? 1, and pH value of 4–8. The optimal dosage of PAFC is 90–150 mg/L with a pH of 2–12. The optimal dosage for PAFC/P(DAC-MAPTAC-AM) is as follows: PAFC dosage of 90–150 mg/L, P(DAC-MAPTAC-AM) dosage of 8–12 mg/L, and pH range of 2–6. When P(DAC-MAPTAC-AM) was used alone, the optimal removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol were 81.0%, 35.0%, 75.0%, and 80.3%, respectively. PAFC has good tolerance to wastewater pH and good pH buffering. Thus, the flocculation treatment of coal chemical wastewater using the PAFC/P(DAC-MAPTAC-AM) compound also exhibits excellent resistance and buffering capacity.  相似文献   
199.
Foliar application of Si can generally reduce As translocation from roots to shoots in rice; however, it does not always work, particularly under high As stress. Here, the effects of foliar application of nanoscale silica sol on As accumulation in rice were investigated under low (2 μmol/L) and high (8 μmol/L) arsenite stress. The results revealed that foliar Si application significantly decreased the As concentration in shoots under low arsenite stress, but showed different effects under high arsenite stress after 7 days of incubation. The reduction in root-to-shoot As translocation under the 2As+Si treatment was related to the down-regulation of OsLsi1 and OsLsi2 expression and up-regulation of OsABCC1 expression in roots. In the 8As+Si treatment, the expressions of OsLsi1, OsLsi2, and OsABCC1 were significantly promoted, which resulted in substantially higher As accumulation in both the roots and shoots. In the roots, As predominantly accumulated in the symplasts (90.6%–98.3%), in which the majority of As was sequestered in vacuoles (79.0%–94.0%) under both levels of arsenite stress. Compared with that of the 8As treatment, the 8As+Si treatment significantly increased the As concentration in cell walls, but showed no difference in the vacuolar As concentration, which remained constant at approximately 69.1–71.7 mg/kg during days 4–7. It appeared that the capacity of root cells to sequester As in the vacuoles had a threshold, and the excess As tended to accumulate in the cell walls and transfer to the shoots via apoplasts under high arsenite stress. This study provides a better understanding of the different effects of foliar Si application on As accumulation in rice from the view of arsenite-related gene expression and As subcellular distribution in roots.  相似文献   
200.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号