首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   1篇
  国内免费   2篇
安全科学   10篇
环保管理   9篇
综合类   62篇
基础理论   6篇
污染及防治   13篇
评价与监测   14篇
社会与环境   9篇
灾害及防治   3篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   8篇
  2016年   7篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   13篇
  2008年   9篇
  2007年   11篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
排序方式: 共有126条查询结果,搜索用时 39 毫秒
61.
To investigate the chemical characteristics of precipitation in the polluted coastal atmosphere, a total of 46 event-based precipitation samples were collected using a wet-only automatic precipitation collector from September 2006 to October 2007 at metropolitan Newark, New Jersey in the US East Coast. Samples were analyzed by ion chromatography for the concentrations of major inorganic ions (Cl, NO3, SO42−, F, NH4+, Ca2+, Mg2+, Na+, K+) and organic acid species (CH3COO, HCOO, CH2(COO)22−, C2O42−). Selected trace metals (Sb, Pb, Al, V, Fe, Cr, Co, Ni, Cu, Zn, Cd) in samples were determined by ICPMS. Mass concentration results show that SO42− was the most dominant anion accounting for 51% of the total anions, controlling the acidity of the precipitation. NH4+ accounted for 48.6% of the total cations, dominating the precipitation neutralization. CH3COO and HCOO were the two dominant water-soluble organic acid species, accounting for 42% and 40% of the total organic acids analyzed, respectively. Al, Zn and Fe were the three major trace metals in precipitation, accounting for 34%, 27%, and 25% of the total mass of metals analyzed. The pH values in precipitation ranged from 4.4 to 4.9, indicating an acidic nature. Enrichment Factor (EF) Analysis showed that Na+, Cl, Mg2+ and K+ in the precipitation were primarily of marine origin, while most of the Fe, Co and Al were from crust sources. Pb, V, Cr, Ni were moderately enriched with EFs ranging 43–410, while Zn, Sb, Cu, Cd and F were highly enriched with EFs > 700, indicating significant anthropogenic influences. Factor analysis suggests 6 major sources contributing to the observed composition of precipitation at this location: (1) nitrogen-enriched soil, (2) secondary pollution processes, (3) marine sources, (4) incinerations, (5) oil combustions, and (6) malonate–vanadium enriched sources. To further explore the source–precipitation event relationships and seasonality, cluster analysis was performed for all precipitation events. Results show that about half of the precipitation events were characterized by mixed sources. Significant influences of nitrogen-enriched soil and marine sources were associated with precipitation events in spring and autumn, while secondary pollution processes, incineration and oil combustion contributed greatly in summer.  相似文献   
62.
To investigate the impact of the number of observations on molecular marker-based positive matrix factorization (MM-PMF) source apportionment models, daily PM2.5 samples were collected in East St. Louis, IL, from April 2002 through May 2003. The samples were analyzed for daily 24-h average concentrations of elemental and organic carbon, trace elements, and speciated particle-phase organic compounds. A total of 273 sets of observations were used in the model and consisted of all valid sets of observations from the year long data set minus one sixth of the measurements, which were collected every 6th day and were analyzed by different chemical analysis techniques. In addition to the base case of 273 samples, systematic subsets of the data set were analyzed by PMF. These subsets of data included 50% of the observations (135–138 days), 33% of the observations (90–92 days) and 20% of the observations (52–56 days). In addition, model runs were also examined that used 48-h, 72-h, 6-day, and weekly average concentrations as model inputs. All MM-PMF model runs were processed following the same procedures to explore the stability of the source attribution results. Consistent with previous MM-PMF results for East St. Louis, the main sources of organic aerosol were found to be mobile sources, secondary organic aerosols (SOAs), resuspended soil and biomass combustions, as well as an n-alkane dominated point source and other combustion sources. The MM-PMF model was reasonably stable when the number of observations in the input was reduced to ninety, or approximately 33% of observations present in the base case. In these cases, the key factors including resuspended soil, mobile and secondary factors, which accounted for more than 70% of the measured OC concentrations, were stable as defined by a relative standard deviation (RSD) of less than 30%. Similar results were obtained from the smaller data subsets, but resulted in larger uncertainties, with several of these factors yielding RSD of greater than 30%. The three factors with the largest OC contributions were more stable than the other minor factors, even when the number of observations was nominally 50 days. Secondary organic aerosol (SOA) was the most stable factor observed in the model runs. Since it is unclear if these results can be broadly applied to all MM-PMF models, additional studies of this nature are needed to assess the broader applicability of these conclusions. Until such studies are implemented, this paper provides a foundation to design future studies in sampling strategies for source apportionment using MM-PMF.  相似文献   
63.
为了掌握雾霾期大气PM 2.5和PM 10中无机元素污染特征,于2013年10月20~31日期间采集了东北某市发生严重雾霾时大气PM 2.5和PM 10样品,分析了颗粒物样品中21种无机元素(K、Ca、Na、Mg、Mn、Pb、Cd等)的浓度。结果表明:大气PM 2.5和PM 10浓度普遍超标,超标率分别达88.89%、66.67%;大气PM 2.5和PM 10中元素质量浓度主要是由Na、S、Ca、K、Fe、Al、Si、As、Mg 9种元素贡献;元素的富集状况分析表明,Na、Zn、Ca、Cr、Ni、Cu、Mn、Cd、Pb和As在非雾霾期和雾霾期期富集程度较高,污染较严重,受人为污染源影响较大;以不同元素做参比,所得各元素富集系数不同。  相似文献   
64.
65.
In present study focus has been given on estimating quality and toxicity of waste with respect to heavy metals and its impact on groundwater quality, using statistical and empirical relationships between different hydrochemical data, so that easy monitoring may be possible which in turn help the sustainable management of landfill site and municipal solid waste. Samples of solid waste, leachate and groundwater were analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrochemical nature. Results suggest the existence of an empirical relationship between some specific indicator parameters like heavy metals of all three above mentioned sample type. Further, K/Mg ratio also indicates three groundwater samples heavily impacted from leachate contamination. A good number of samples are also showing higher values for and Pb than that of World Health Organization (WHO) drinking water regulation. Predominance of Fe and Zn in both groundwater and solid waste samples may be due to metal plating industries in the area. Factor analysis is used as a tool to explain observed relation between numerous variables in term of simpler relation, which may help to deduce the strength of relation. Positive loading of most of the factors for heavy metal clearly shows landfill impact on ground water quality especially along the hydraulic gradient. Cluster analysis, further substantiates the impact of landfill. Two major groups of samples obtained from cluster analysis suggest that one group comprises samples that are severely under the influence of landfill and contaminated leachates along the groundwater flow direction while other assorted with samples without having such influence.  相似文献   
66.
ABSTRACT: Agriculture is the leading cause of regional‐scale non‐point source (NPS) pollution in the world today. Indices of pesticide leaching in the vadose zone are well suited for estimating the spatial accumulation and distribution of NPS pollutants in the near surface. In this study the Attenuation Factor (AF) and the Leaching index (Li) are used to assess the near‐surface leaching potential for 32 important agrochemicals for world average agricultural soil properties and recharge rates. The AF and Li indices both require the same input data and appear to work well for nonpolar chemicals. In the effort reported here the AF and Li indices produced similar results for the 32 agrochemicals. Pesticides with high and moderate leaching potential are identified. The AF estimates were more constant than the Li estimates for changes in the compliance depth and recharge rate. The AF index is simpler to use than the Li index and, therefore, is more likely to be employed in the future for screening/ranking agrochemicals relative to regional‐scale NPS ground water vulnerability.  相似文献   
67.
洋河水库水质主成分分析   总被引:2,自引:1,他引:2  
自20世纪80年代以来,洋河水库每年夏季都爆发“水华”现象,水质不断恶化。为研究水库水体水质年变化情况,于2005年对水库5个采样点的叶绿素a(Chl-a)、总磷(TP)等12项水化学指标进行为期1年的监测。采用基于因子分析的主成分分析方法,将洋河水库水质参数概括为5个主要成分,并分析各个主成分的含义以及其月均值随时间的变化规律。最后结合空间数据,分析了5个主成分年均值的空间分布特征和意义。结果表明,南库区的水质要明显好于北库区。  相似文献   
68.
沈阳市降尘时空分布特征及影响因素分析   总被引:1,自引:0,他引:1  
程昕  蔺昕 《环境保护科学》2009,35(6):1-3,58
大气中的污染物对人体健康存在直接危害,对其分布特征和来源开展研究可为大气环境质量改善提供理论依据。本文通过对沈阳市1997~2006年间大气降尘布点监测数据进行分析,发现沈阳市降尘量总体呈现下降趋势,采暖期降尘量高于非采暖期;沈阳市各城区降尘量大小顺序为:于洪区>沈河区>和平区>大东区>铁西区>东陵区>皇姑区;对比同期环境质量公报与气象数据,燃煤和区域气象条件是影响沈阳市降尘的重要内在和外来因素。  相似文献   
69.
Through field sampling of atmospheric dustfall in regions of Zhuzhou City, China for a period of one year, the deposition fluxes of atmospheric dustfall and five heavy metals contained inside, including Cr, As, Cd, Hg and Pb, were analyzed. Meanwhile the enrichment factor and index methods were used to analyze the pollution characteristics of heavy metals of atmospheric dustfall in Zhuzhou. The annual deposition flux of atmospheric dustfall in Zhuzhou was 50.79 g/(m~2·year), while the annual deposition fluxes of Cr, As, Cd, Hg and Pb were 9.80, 59.69, 140.09, 0.87 and 1074.91 mg/(m~2·year), respectively.The pollution level of atmospheric dustfall in Zhuzhou was relatively lower compared with most other cities in China, but the deposition fluxes of As, Cd, Hg and Pb in atmospheric dustfall in Zhuzhou were much higher than that in most cities and regions around the world. Cd is the typical heavy metal element in atmospheric dustfall in Zhuzhou, and both the enrichment factor and pollution index of Cd were the highest. Cd, Hg, Pb and As in atmospheric dustfall were mainly from human activities. According to the single-factor index, Nemerow index and pollution load index analyses, the atmospheric dustfall in Zhuzhou could easily cause severe heavy metal pollution to urban soil, and the most polluting element was Cd, followed by Pb, As and Hg. Only the pollution level of Cr lay in the safety region and mainly originated from natural sources.  相似文献   
70.
The Nandong Underground River System (NURS) is located in a typical karst agriculture dominated area in the southeast Yunnan Province, China. Groundwater plays an important role for social and economical development in the area. However, with the rapid increase in population and expansion of farm land, groundwater quality has degraded. 42 groundwater samples collected from springs in the NURS showed great variation of chemical compositions across the study basin. With increased anthropogenic contamination in the area, the groundwater chemistry has changed from the typical Ca–HCO3 or Ca (Mg)–HCO3 type in karst groundwater to the Ca–Cl (+ NO3) or Ca (Mg)–Cl (+ NO3), and Ca–Cl (+ NO3 + SO4) or Ca (Mg)–Cl (+ NO3 + SO4) type, indicating increases in NO3, Cl and SO42− concentrations that were caused most likely by human activities in the region. This study implemented the R-mode factor analysis to investigate the chemical characteristics of groundwater and to distinguish the natural and anthropogenic processes affecting groundwater quality in the system. The R-mode factor analysis together with geology and land uses revealed that: (a) contamination from human activities such as sewage effluents and agricultural fertilizers; (b) water–rock interaction in the limestone-dominated system; and (c) water–rock interaction in the dolomite-dominated system were the three major factors contributing to groundwater quality. Natural dissolution of carbonate rock (water–rock interaction) was the primary source of Ca2+ and HCO3 in groundwater, water–rock interaction in dolomite-dominated system resulted in higher Mg2+ in the groundwater, and human activities were likely others sources. Sewage effluents and fertilizers could be the main contributor of Cl, NO3, SO42−, Na+ and K+ to the groundwater system in the area. This study suggested that both natural and anthropogenic processes contributed to chemical composition of groundwater in the NURS, human activities played the most important role, however.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号