首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   3篇
  国内免费   79篇
安全科学   18篇
废物处理   9篇
环保管理   58篇
综合类   233篇
基础理论   65篇
污染及防治   153篇
评价与监测   55篇
社会与环境   8篇
  2023年   11篇
  2022年   16篇
  2021年   12篇
  2020年   15篇
  2019年   13篇
  2018年   14篇
  2017年   10篇
  2016年   19篇
  2015年   37篇
  2014年   28篇
  2013年   26篇
  2012年   28篇
  2011年   46篇
  2010年   31篇
  2009年   44篇
  2008年   54篇
  2007年   44篇
  2006年   30篇
  2005年   16篇
  2004年   14篇
  2003年   13篇
  2002年   15篇
  2001年   8篇
  2000年   19篇
  1999年   7篇
  1998年   1篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有599条查询结果,搜索用时 31 毫秒
51.
We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha−1 yr−1 in a soil budget and 65 kg N2O–N ha−1 yr−1 and 67 kg N ha−1 yr−1 in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE.  相似文献   
52.
The potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha−1 yr−1) and a low N deposition site, Ben Wyvis (7.2 kg ha−1 yr−1). After two years, tissue N of Racomitrium shoots transplanted from higher N sites to Ben Wyvis only partially equilibrated to reduced N deposition whereas reciprocal transplants almost matched the tissue N of indigenous moss. Unexpectedly, moss shoot growth was stimulated at higher N deposition sites. However, moss depth and biomass increased in turfs transplanted to Ben Wyvis, apparently due to slower shoot turnover (suggested to result partly from decreased tissue C:N slowing decomposition), whilst abundance of vascular species declined. Racomitrium heath has the potential to recover from the impacts of N deposition; however, this is constrained by the persistence of enhanced moss tissue N contents.  相似文献   
53.
We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900-2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios (no change and SRES A1 scenario) were used. Furthermore, the possible limitation of forest growth by calcium, magnesium, potassium and phosphorus is investigated. The area and age structure of the forests was assumed to stay constant to observations during the period 1970-1990. Under these assumptions, the simulations show that the change in forest growth and carbon sequestration in the past is dominated by changes in nitrogen deposition, while climate change is the major driver for future carbon sequestration. However, its impact is reduced by nitrogen availability. Furthermore, limitations in base cations, especially magnesium, and in phosphorus may significantly affect predicted growth in the future.  相似文献   
54.
The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution.  相似文献   
55.
The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the model accurately simulated soil solution concentrations for most plots as indicated by goodness-of-fit measures, although some of the intra-annual variation especially in nitrate and aluminium concentrations could not be reproduced. Model evaluations of two emission-deposition scenarios (current legislation and maximum feasible reductions) for the period 1970-2030 show a strong reduction in sulphate concentrations between 1980 and 2000 in the soil due to the high reductions in sulphur emissions. However, current legislation hardly reduces future nitrogen concentrations, whereas maximum feasible reductions reduces them by more than half. Maximum feasible reductions are also more effective in increasing pH and reducing aluminium concentrations, mostly below ‘critical’ values.  相似文献   
56.
NO2 and NH3 concentrations were measured across a Special Area for Conservation in southern England, at varying distances from the local road network. Exceedances of the critical levels for these pollutants were recorded at nearly all roadside locations, extending up to 20 m away from roads at some sites. Further, paired measurements of NH3 and NO2 concentrations revealed differences between ground and tree canopy levels. At “background” sites, away from the direct influence of roads, concentrations were higher within tree canopies than at ground level; the reverse pattern was, however, seen at roadside locations. Calculations of pollutant deposition rates showed that nitrogen inputs are dominated by NH3 at roadside sites. This study demonstrates that local traffic emissions contribute substantially to the exceedance of critical levels and critical loads, and suggests that on-site monitoring is needed for sites of nature conservation value which are in close proximity to local transport routes.  相似文献   
57.
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway.  相似文献   
58.
Between the tenth and twentieth century the population of Paris city increased from a few thousand to near 10 million inhabitants. In response to the growing urban demand during this period, the agrarian systems of the surrounding rural areas tremendously increased their potential for commercial export of agricultural products, made possible by a surplus of agricultural production over local consumption by humans and livestock in these areas. Expressed in terms of nitrogen, the potential for export increased from about 60 kg N/km2/year of rural territory in the Middle Ages, to more than 5,000 kg N/km2/year from modern agriculture. As a result of the balance between urban population growth and rural productivity, the rural area required to supply Paris (i.e. its food-print) did not change substantially for several centuries, remaining at the size of the Seine watershed surrounding the city (around 60,000 km2). The theoretical estimate of the size of the supplying hinterland at the end of the eighteenth century is confirmed by the figures deduced from the analysis of the historical city toll data (octroi). During the second half of the twentieth century, the ‘food-print’ of Paris reduced in size, owing to an unprecedented increase in the potential for commercial export associated with modern agricultural systems based on chemical N fertilization. We argue that analysing the capacity of territories to satisfy the demand for nitrogen-containing food products of local or distant urban population and markets might provide new and useful insights when assessing world food resource allocation in the context of increasing population and urbanization.  相似文献   
59.
R. Prado  C. Rioboo  C. Herrero  A. Cid   《Chemosphere》2009,76(10):1440-1444
Huge quantities of pesticides are dispersed in the environment, affecting non-target organisms. Since paraquat affects the photosynthetic process, the biochemical composition of affected species should be altered. The effect of paraquat on Chlamydomonas moewusii, a freshwater non-target species, was studied. After 48 h of herbicide exposure, growth rate, dry weight, and chlorophyll a and protein content were affected by paraquat concentrations above 0.05 μM. C/N ratio was also affected due to a decrease in nitrogen content in the dry biomass, while the carbon content remained constant for all paraquat concentrations assayed. Enzymes involved in nitrogen assimilation were affected by paraquat, being nitrate reductase activity more sensitive to paraquat than nitrite reductase. Based on the results obtained in the present study, paraquat exerts adverse effects upon a common freshwater green microalga, thus the application of this herbicide for weed control must be carried out very carefully, so that any disturbance affecting algae will have severe repercussions on higher trophic levels and on the elemental biogeochemical cycles.  相似文献   
60.
Strandberg M  Damgaard C  Degn HJ  Bak J  Nielsen KE 《Ambio》2012,41(4):393-401
We report observations of disappearance of Erica tetralix in wet heathland, which is unlikely to be caused by competition, as E. tetralix is dying before its place is taken up by other species. To investigate the causes, we used both old and new data. Results showed that presence of Molinia caerulea and Calluna vulgaris were substantial in the former E. tetralix dominated areas. Measurements of the C/N ratio in the morlayer were between 21 and 26 under the E. tetralix stands. As the expected C/N ratio in a healthy nutrient poor ecosystem like the E. tetralix wet heathland is around 30, this indicates that the ratio is probably decreasing and, correspondingly, the probability of nitrogen leaching from the ecosystem is increasing. The morlayer pH was extremely low—between 3.03 and 3.78. This represents a pH decline since the 1960s, where pH values generally were above 4. This supports the hypothesis that the decrease in morlayer pH is the major factor explaining the disappearance of E. tetralix and that measures to increase pH should be considered as part of the recommendations for relevant future management.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-012-0251-z) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号