首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
安全科学   1篇
环保管理   5篇
综合类   8篇
基础理论   5篇
污染及防治   1篇
评价与监测   7篇
社会与环境   55篇
灾害及防治   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   16篇
  2010年   24篇
  2009年   8篇
  2008年   7篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1979年   1篇
排序方式: 共有83条查询结果,搜索用时 529 毫秒
51.
In order to improve regulatory tools for radon risk management in France, a harmonised methodology to derive a single map of the geogenic radon potential has been developed. This approach consists of determining the capacity of the geological units to produce radon and to facilitate its transfer to the atmosphere, based on the interpretation of existing geological data. This approach is firstly based on a classification of the geological units according to their uranium (U) content, to create a radon source potential map. This initial map is then improved by taking into account the main additional parameters, such as fault lines, which control the preferential pathways of radon through the ground and which can increase the radon levels in soils. The implementation of this methodology to the whole French territory is currently in progress. We present here the results obtained in one region (Bourgogne, Massif Central) which displays significant variations of the geogenic radon potential. The map obtained leads to a more precise zoning than the scale of the existing map of radon priority areas currently based solely on administrative boundaries.  相似文献   
52.
Radon and gamma radiation level measurements were carried out inside the La Carolina mine, one of the oldest gold mining camps of southern South America, which is open for touristic visits nowadays. CR-39 track-etch detectors and thermoluminescent dosimeters of natural CaF2 and LiF TLD-100 were exposed at 14 points along the mine tunnels in order to estimate the mean 222Rn concentration and the ambient dose equivalent during the summer season (November 2008 to February 2009). The values for the 222Rn concentration at each monitoring site ranged from 1.8 ± 0.1 kBq m−3 to 6.0 ± 0.5 kBq m−3, with a mean value of 4.8 kBq m−3, indicating that these measurements exceed in about three times the upper action level recommended by ICRP for workplaces. The correlations between radon and gamma radiation levels inside the mine were also investigated. Effective doses due to 222Rn and gamma rays inside the mine were determined, resulting in negligible values to tourists. Considering the effective dose to the mine tourist guides, values exceeding 20 mSv of internal contribution to the effective doses can be reached, depending on the number of working hours inside the mine.  相似文献   
53.
浅析数字化气氡与模拟水氡的差异性   总被引:3,自引:0,他引:3  
以安徽庐江井的SD-3A型自动测氡仪连续观测和FD-125测氡仪人工观测的资料为基础,结合笔者的观测实践和有关试验,并参考省内外有关台站的观测资料,分析和讨论了数字化测气氡和人工测水氡在地下水中的赋存方式及相互关系、取样方式、测量方法、计量单位的物理意义、影响因素、干扰排除、标定方法、前兆异常动态等方面的差异及其可能的原因.便于研究人员和观测人员在实际操作中参考和应用.  相似文献   
54.
用双滤膜法和Thomas三段法测定了哈密地区环境空气中氡及其子体浓度.结果表明,室内氡及其子体浓度平均值分别为28.OBq·m-3和7.5×10-8J·m-3,室外氡及其子体浓度平均值分别为10.7Bq·m-3和3.1×10-3J·m-3.氡及其子体所致居民人均有效剂量当量为1.03mSv·a-1,集体有效剂量当量为4.2×102man·Sv.  相似文献   
55.
In the beginning of 1990s within the framework of a national radon survey of more than 1500 points, radon measurements were performed in more than 100 houses located in Galicia region, in the Northwest area of Spain. The houses were randomly selected only bearing in mind general geological aspects of the region. Subsequently, a nationwide project called MARNA dealt with external gamma radiation measurements in order to draw a Spanish natural radiation map. The comparison in Galicia between these estimations and the indoor radon levels previously obtained showed good agreement. With the purpose of getting a confirmation of this relationship and also of creating a radon map of the zone, a new set of measurements were carried out in 2005. A total of 300 external gamma radiation measurements were carried out as well as 300 measurements of (226)Ra, (232)Th and (40)K content in soil. Concerning radon, 300 1-m-depth radon measurements in soil were performed, and indoor radon concentration was determined in a total of 600 dwellings. Radon content in soil gave more accurate indoor radon predictions than external gamma radiation or (226)Ra concentration in soil.  相似文献   
56.
The RPII radon (Rn) laboratory holds accreditation for the International Standard ISO/IEC 17025. A requirement of this standard is an estimate of the uncertainty of measurement. This work shows two approaches to estimate the uncertainty. The bottom-up approach involved identifying the components that were found to contribute to the uncertainty. Estimates were made for each of these components, which were combined to give a combined uncertainty of 13.5% at a Rn concentration of approximately 2500Bqm(-3) at the 68% confidence level. By applying a coverage factor of k=2, the expanded uncertainty is +/-27% at the 95% confidence level. The top-down approach used information previously gathered from intercomparison exercises to estimate the uncertainty. This investigation found an expanded uncertainty of +/-22% at approximately 95% confidence level. This is good agreement for such independent estimates.  相似文献   
57.
Large temporal variations of radon (222Rn) are often encountered in air in the geologic environment, at time scales from diurnal to annual. Interpretations as to the nature of these variations, unique to 222Rn, often invoke either above surface atmospheric variations, or the influence of subtle active geodynamic processes. So far the eventual geophysical drivers of the variation of 222Rn as well as its specific qualities enabling this temporal variation are not known. New insight on the temporal variation of 222Rn is gained by experimental simulation in confined air. Two short laboratory experiments, and one external experiment lasting over 3 years, were performed inside closed canisters and using natural and commercial 222Rn sources. Internal and external gamma and alpha detectors recorded variations of the radiation, up to around 20% of the equilibrium level. Radon signals of different time scale occurred with: a) periodic annual and semi-annual signals; b) non-periodic multi-day signals; c) periodic daily signals. Similar, related, inversely-related and dissimilar temporal patterns were manifested in the measured time series of the different sensors. Diurnal periodicity was dominated by the solar tide components S1, S2 and S3, exhibiting unlike relative amplitudes and different phases at the different sensors. A compound association occurs among the amplitudes and phases of the diurnal and seasonal periodicities of the daily 222Rn signal, linking the periodic phenomena to the rotation of earth around its axis and around the sun. 222Rn variation patterns in the frequency-time domain cannot be driven by the corresponding atmospheric variation patterns. These results, obtained under static and isolated conditions, are in disagreement with the expected radioactive equilibrium and its spatially uniform expression within and around the experimental volume. The external influence which drives the daily signals evolving from 222Rn inside the canister is non-atmospheric and seemed to be from a remote source and traversed a 5-cm thick lead shield. The similarities with observations on 222Rn signals from upper crustal levels imply that such an external influence, possibly as a component of solar irradiance, drives the 222Rn signals to a depth of at least 100 m. New combined prospects for the research are indicated in terms of the radioactive behavior of 222Rn in air and in terms of an above surface geophysical driver for this behavior.  相似文献   
58.
The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m−3.Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods.The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure.  相似文献   
59.
For the first time in Hong Kong, atmospheric radon concentration was continuously monitored between November 2007 and October 2008. This paper presents the results obtained during the 12-month period. The annual mean atmospheric radon concentration in Hong Kong was found to be 9.3 Bq m−3 which was close to the level at neighbouring places like Guangdong and Taiwan. An estimation of the dose arising from atmospheric radon to the Hong Kong population was made. The meteorological effects on the variation of atmospheric radon concentration were discussed. It was found that the origin of the airmass and stability of the local atmosphere played vital roles in the seasonal and diurnal variations respectively, whereas precipitation caused abrupt changes in rainy days. An attempt was also made to find out the contribution of atmospheric radon to the ambient gamma dose rate.  相似文献   
60.
A Radon Potential Map as well as a mean indoor Radon Concentration Map is available from the Austrian National Radon Project (1992-2002). These maps are based on the average Radon Potential/Concentration within every municipality and they sort municipalities into three radon ‘risk’ classes. This is a convenient way for the administration, but it does not describe the real radon risk distribution within a municipality because of the often inhomogeneous geological situation. Therefore, a combination of indoor radon data with all relevant parameters such as house type, storey and ventilation rates along with geological information should be used to improve the existing radon maps. The method, described here, uses Bayes' theory to combine the Radon Potential derived from indoor radon measurements with information from geology. The existing Radon Potential Map was improved by using available soil gas radon data at certain geological units and extrapolated transfer factors. The modifications of the map are shown and several problems arising with the application of this technique are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号