首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   4篇
  国内免费   10篇
安全科学   32篇
废物处理   7篇
环保管理   21篇
综合类   30篇
基础理论   20篇
污染及防治   25篇
评价与监测   14篇
社会与环境   3篇
灾害及防治   1篇
  2023年   4篇
  2022年   1篇
  2021年   5篇
  2020年   9篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   12篇
  2013年   12篇
  2012年   10篇
  2011年   14篇
  2010年   5篇
  2009年   12篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有153条查询结果,搜索用时 10 毫秒
141.
The concentration levels of major (Al, Ca, Fe, K, Mg, Mn, Na, Si, Ti) and some trace (Be, Se, Tl) elements were determined by atomic absorption spectrometry for the coal fly ashes emitted in the combustion of anthracite and soft coals. Total contents and concentration profiles were established for all elements studied as a function of the mean particle size. The content of those elements volatilized during coal combustion (Se, Tl) decreases with increasing particle size, while the unvolatilized elements show small changes in their concentration profiles. The content of aluminium shows a minimum level at a mean particle size of about 25 μm.  相似文献   
142.
Extensive aquatic or semi-aquatic production of water spinach (Ipomoea aquatica Forssk.) for human consumption takes place in Southeast Asia. The aim of this study was to assess the concentrations of 38 elements in soil and water spinach cultivated under different degrees of wastewater exposure in Hanoi, Vietnam. The results showed no effect of wastewater use on the overall element concentrations in soil and water spinach. Mean soil concentrations for selected potentially toxic elements at the studied field sites had the following ranges 9.11–18.7 As, 0.333–0.667 Cd, 10.8–14.5 Co, 68–122 Cr, 34.0–62.1 Cu, 29.9–52.8 Ni, 32.5–67.4 Pb, 0.578–0.765 Tl and 99–189 Zn mg kg−1 dry weight (d.w.). In all samples Cd, Pb and Zn soil concentrations were below the Vietnamese Guideline Values (TCVN 7209-2002) for agricultural soils whereas As and Cu exceeded the guideline values. Maximum site element concentrations in water spinach were 0.139 As, 0.032 Cd, 0.135 Cr, 2.01 Cu, 39.1 Fe, 57.3 Mn, 0.16 Ni, 0.189 Pb and 6.01 Zn mg kg−1 fresh weight (f.w.). The site and soil content of organic carbon were found to have high influence on the water spinach element concentrations whereas soil pH and the total soil element concentrations were of less importance. The estimated average daily intake of As, Cd, Cu, Fe, Pb and Zn for adult Vietnamese consumers amounts to <11% of the maximum tolerable intake proposed by FAO/WHO for each element. It is assessed that the occurrence of the investigated elements in water spinach will pose low health risk for the consumers.  相似文献   
143.
We present the results of a parametric sensitivity analysis of a widely used model for atmospheric dispersion of toxic gases, in order better to understand the influence of user-adjustable parameters on model outputs. We have studied 60 min continuous release scenarios for three different products (nitric oxide, ammonia and chlorine), chosen to cover a range of physical characteristics and storage conditions. For each product, we have broken down base-case scenarios into a number of sub-scenarios corresponding to different release conditions which determine physical phenomena (flow rate, release angle, release elevation and atmospheric stability class). The use of statistical tools to analyze the results of a large number of model executions allows us to rank model parameters according to their influence on the variability of a number of model outputs (distances and concentrations), on a per-scenario and per-product basis. Analysis of the results allows us to verify our understanding of the modeling of cloud dispersion.  相似文献   
144.
有害气体的扩散吸收和无动力检测技术   总被引:4,自引:0,他引:4  
系统地论述了有害气体的扩散吸收和无动力检测技术的原理,介绍了无动力检测器的组成结构、技术指标及应用范围,综述了无动力检测技术的发展状况和趋势,为此项技术的应用提供了科学依据  相似文献   
145.
AQUATOX combines aquatic ecosystem, chemical fate, and ecotoxicological constructs to obtain a truly integrative fate and effects model. It is a general, mechanistic ecological risk assessment model intended to be used to evaluate past, present, and future direct and indirect effects from various stressors including nutrients, organic wastes, sediments, toxic organic chemicals, flow, and temperature in aquatic ecosystems. The model has a very flexible structure and provides multiple analytical tools useful for evaluating ecological effects, including uncertainty analysis, nominal range sensitivity analysis, comparison of perturbed and control simulations, and graphing and tabulation of predicted concentrations, rates, and photosynthetic limitations. It can represent a full aquatic food web, including multiple genera and guilds of periphyton, phytoplankton, submersed aquatic vegetation, invertebrates, and fish and associated organic toxicants. It can model up to 20 organic chemicals simultaneously. (It does not model metals.) Modeled processes for organic toxicants include chemodynamics of neutral and ionized organic chemicals, bioaccumulation as a function of sorption and bioenergetics, biotransformation to daughter products, and sublethal and lethal toxicity. It has an extensive library of default biotic, chemical, and toxicological parameters and incorporates the ICE regression equations for estimating toxicity in numerous organisms. The model has been implemented for streams, small rivers, ponds, lakes, reservoirs, and estuaries. It is an integral part of the BASINS system with linkage to the watershed models HSPF and SWAT.  相似文献   
146.
Soils of the Pampas show no signs of contamination with potentially toxic elements (PTEs), except in the areas that surround cities. The concentration of PTE in crops grown in this region is in most cases unknown. Our objective was to determine the PTE concentration in main field crops and pastures grown in 'a priori' non-contaminated areas and in potentially contaminated areas around cities. Forty-eight plots from farms located far from cities or roads and 36 plots from farms located very close to cities or to high traffic roads were sampled. The area ranged from 33 degrees 40' S to 36 degrees 0' S and from 57 degrees 35' W to 61 degrees 22' W. Maize, soybean, wheat, grazed grassland and pastures, and their top soils were sampled. All samples were acid digested. Cadmium, zinc, chromium, copper, nickel and lead were determined using ICPES. Standard t-tests were performed. All soils were within the known normal values of soil PTE concentrations, with the exception of a few cases around cities. PTE accumulation on grains and aerial biomass is considered almost negligible in crops grown in both studied areas, with the exception of a few elements in soybean. PTE concentrations in crops and pastures are in keeping with the low content of trace metals found in soils of the Pampas.  相似文献   
147.
Toxic Release Inventory (TRI) data were used to compare average releases (kilograms per metric ton) of paper mills using primarily recovered wastepaper versus mills using primarily virgin wood fiber. Annual releases, for 79 mills, of chlorine, chlorine dioxide, chloroform, acids (hydrochloric and sulfuric), volatile organics (methyl ethyl ketone, methanol, and acetone), and ammonia were compared over the years 1987–1992. Both types of mills reported generally lower toxic releases in 1992 than in 1987; however, toxic releases in all categories were significantly lower from mills using recovered wastepaper than from mills using virgin wood fiber, strongly demonstrating that recycling has added benefits beyond reduced resource consumption. These results suggest that environmental policy should concentrate as much on increasing demand for recycled paper and developing wastepaper collection infrastructure as it does on end-of-pipe pollution abatement.  相似文献   
148.
Laboratory stream microcosms have been used to study transport, fate, and effects of toxic substances in stream ecosystems. Several general concerns exist in utilizing laboratory streams in this way. We summarize some of the most important and difficult of these problems and endeavor to provide theoretical understanding, evaluation, and empirical approaches necessary for making laboratory stream ecosystem studies more useful in solving problems of toxic substance behavior in natural stream ecosystems. Well-designed laboratory streams and other microcosms are complex dynamic systems that can contribute to our understanding of the behavior of toxic substances. But such systems are far too complex and dynamic to be employed as bioassay, monitoring, or predictive tools, as individual organisms have been.  相似文献   
149.
In order to realistically simulate both chemistry and transport of atmospheric organic pollutants, it is indispensable that the applied models explicitly include coupling between different components of the global environment such as atmosphere, hydrosphere, cryosphere and soil system. A model with such properties is presented.

The atmospheric part of the model is based on the equations in a general contravariant form which permits easy changes of the coordinate system by redefining the metric tensor of a specifically employed coordinate system. Considering a need to include explicitly the terrain effects, the terrain following spherical coordinate system is chosen from among many possible coordinate systems. This particular system is a combination of the Gal-Chen coordinates, commonly employed in mesoscale meteorological models, and the spherical coordinates, typical for global atmospheric models.

In addition to atmospheric transport, the model also simulates the exchange between air and different types of underlying surfaces such as water, soil, snow, and ice. This approach permits a realistic representation of absorption and delayed re-emission of pollutants from the surface to the atmosphere and, consequently, allows to capture hysteresis-like effects of the exchange between the atmosphere and the other components of the system. In this model, the most comprehensive numerical representation of the exchange is that for soil. In particular, the model includes a realistic soil module which simulates both diffusion and convection of a tracer driven by evaporation from the soil, precipitation, and gravity.

The model is applied to a long-term simulation of the transport of pesticides (hexachlorocyclohexanes in particular). Emission fluxes from the soil are rigorously computed on the basis of the realistic data of the agricultural application. All four modelled systems, i.e. atmosphere, soil, hydrosphere and cryosphere, are driven by objectively analysed meteorological data supplemented, when necessary, by climatological information. Therefore, the verification against the observed data is possible. The comparison of the model results and the observations taken at remote stations in the Arctic indicates that the presented global modelling system is able to capture both trends and short-term components in the observed time series of the concentrations, and therefore, provides a useful tool for the evaluation of the source–receptor relationships.  相似文献   

150.
- Sustainable chemistry - Section editors: Klaus Günter Steinhäuser, Steffi Richter, Petra Greiner, Jutta Penning, Michael AngrickBackground, Aim and Scope Recent developments in European chemicals policy, including the Registration, Evaluation and Authorization of Chemicals (REACH) proposal, provide a unique opportunity to examine the U.S. experience in promoting sustainable chemistry as well as the strengths and weaknesses of existing policies. Indeed, the problems of industrial chemicals and limitations in current regulatory approaches to address chemical risks are strikingly similar on both sides of the Atlantic. We provide an overview of the U.S. regulatory system for chemicals management and its relationship to efforts promoting sustainable chemistry. We examine federal and state and examine lessons learned from this system that can be applied to developing more integrated, sustainable approaches to chemicals management.Main Features There is truly no one U.S. chemicals policy, but rather a series of different un-integrated policies at the federal, regional, state and local levels. While centerpiece U.S. Chemicals Policy, the Toxic Substances Control Act of 1976, has resulted in the development of a comprehensive, efficient rapid screening process for new chemicals, agency action to manage existing chemicals has been very limited. The agency, however, has engaged in a number of successful, though highly underfunded, voluntary data collection, pollution prevention, and sustainable design programs that have been important motivators for sustainable chemistry. Policy innovation in the establishment of numerous state level initiatives on persistent and bioaccumulative toxics, chemical restrictions and toxics use reduction have resulted in pressure on the federal government to augment its efforts.Results and Conclusions It is clear that data collection on chemical risks and phase-outs of the most egregious chemicals alone will not achieve the goals of sustainable chemistry. These alone will also not internalize the cultural and institutional changes needed to ensure that design and implementation of safer chemicals, processes, and products are the focus of the future. Thus, a more holistic approach of ‘carrots and sticks’ – that involves not just chemical producers but those who use and purchase chemicals is necessary. Some important lessons of the US experience in chemicals management include: (1) the need for good information on chemicals flows, toxic risks, and safer substances.; (2) the need for comprehensive planning processes for chemical substitution and reduction to avoid risk trade-offs and ensure product quality; (3) the need for technical and research support to firms for innovation in safer chemistry; and (4) the need for rapid screening processes and tools for comparison of alternative chemicals, materials, and products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号