首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   0篇
  国内免费   3篇
环保管理   90篇
综合类   20篇
基础理论   10篇
污染及防治   11篇
评价与监测   5篇
社会与环境   5篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   16篇
  2008年   13篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   11篇
  1987年   4篇
  1986年   6篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
131.
The purpose of this work is to assess the impact on the Esteros del Ibera wetland ecosystem caused by the Yacyreta dam, a large hydroelectric power plant on the Parana River, Argentina, in comparison to other factors of environmental change. The project of the dam started around 1970. The power plant began operating in 1994. In 1989, the neighboring Ibera wetland ecosystem showed a substantial increase in the water level for which several different causes were conceivable, including climate change and the dam construction. We analyzed all existing hydrometeorological data and studied other changes that were observed in this ecosystem. A water balance model was used to analyze different scenarios. Increased groundwater inflow, generated since the construction of the dam, appears to be affecting the wetland more than any other factor. The study has implications for the assessment of global and regional consequences of building dams.
Graciela A. CanzianiEmail: Phone: +54-2292-447104Fax: +54-2293-446317
  相似文献   
132.
This article is an extension and application of Preston and Bedford (1988), especially as relevant to bottomland hardwood (BLH) forests of the southeastern United States. The most important cumulative effects in BLH forests result from incremental forest loss (nibbling) and from synergisms resulting from this nibbling. Present regulatory procedures are ineffective in preventing incremental forest loss because of the focus on permit site evaluation, rather than on large landscapes. Three examples are given to illustrate the need for a landscape focus. This perspective requires preplanning or goal-setting to establish the desired conditions to be maintained in the regulated landscape unit.Spatial and temporal scales are of particular concern for landscape impact assessment. Natural drainage basins of about 106 ha, as identified in U.S. Geological Survey hydrologic units, appear to appropriate spatial units: they have fairly natural boundaries, are of sufficient size to support populations of large, wide-ranging mammals, and are compatible with existing maps and databases. Time scales should be sufficiently long to include recovery of wetland ecosystems from human perturbations. In practice, available data sets limit analysis to no longer than 50 yr. Eight indicators of landscape integrity are identified, based on generally available long-term data sets.Linking technical information concerning cumulativeeffects on landscapes to the evaluation of cumulativeimpacts in regulatory programs (i.e., goal-setting) is a serious issue that can benefit from precedents found in the field of epidemiology, and in the establishment of clean air and clean water standards. We suggest that reference data sets must be developed, relating BLH function to structure (forest area). These can be used to set goals for individual watersheds, based on their present conditions and the magnitude and type of perceived development pressures. Thus the crucial steps in establishing a successful program appear to be (1) establish study unit boundaries, (2) assess the condition of study unit landscape integrity, (3) set goals, and (4) consider the impacts of permit proposals with both goals and the existing condition of the study unit landscape in mind.  相似文献   
133.
Irrigated agriculture throughout western North America faces increasing pressure to transfer water to nonagricultural uses, including instream flows for fish and wildlife management. In an important case, increased instream flows are needed in Nebraskas Platte River for recovery of threatened and endangered fish and wildlife species. Irrigated agriculture in the Laramie Basin of southeast Wyoming is a potential water source for the effort to enhance instream flow. However, flood irrigation of hayfields in the Laramie Basin has created many wetlands, both ephemeral and permanent, over the last century. Attempting to increase Platte River instream flows by purchasing water rights or improving irrigation efficiency in the Laramie Basin would transform irrigated agriculture, causing a substantial fraction of the Laramie Basins wetlands to be lost. A creative solution is needed to prevent the sacrifice of one ecosystem on behalf of another. A rotating short-term water-leasing program is proposed. The program allows Laramie Basin producers to contribute to instream flows while continuing to support local wetlands. Permanent wetland desiccation is prevented and regional environmental water needs are met without impairing local ecological resources. Budget analysis is used to provide an initial cost estimate for acquiring water from agriculture through the short-term leasing program. The proposed approach is more expensive than traditional programs but allows contribution to instream flows without major wetland loss. Short-term leasing is a more efficient approach if benefits from wetlands exceed the difference in cost between the short-term lease program and programs that do not conserve wetlands.  相似文献   
134.
Bioassessment is used worldwide to monitor aquatic health but is infrequently used with risk-assessment objectives, such as supporting the development of defensible, numerical water-quality criteria. To this end, we present a generalized approach for detecting potential ecological thresholds using assemblage-level attributes and a multimetric index (Index of Biological Integrity—IBI) as endpoints in response to numerical changes in water quality. To illustrate the approach, we used existing macroinvertebrate and surface-water total phosphorus (TP) datasets from an observed P gradient and a P-dosing experiment in wetlands of the south Florida coastal plain nutrient ecoregion. Ten assemblage attributes were identified as potential metrics using the observational data, and five were validated in the experiment. These five core metrics were subjected individually and as an aggregated Nutrient–IBI to nonparametric changepoint analysis (nCPA) to estimate cumulative probabilities of a threshold response to TP. Threshold responses were evident for all metrics and the IBI, and were repeatable through time. Results from the observed gradient indicated that a threshold was 50% probable between 12.6 and 19.4 g/L TP for individual metrics and 14.8 g/L TP for the IBI. Results from the P-dosing experiment revealed 50% probability of a response between 11.2 and 13.0 g/L TP for the metrics and 12.3 g/L TP for the IBI. Uncertainty analysis indicated a low (typically 5%) probability that an IBI threshold occurred at 10 g/L TP, while there was 95% certainty that the threshold was 17 g/L TP. The weight-of-evidence produced from these analyses implies that a TP concentration > 12–15 g/L is likely to cause degradation of macroinvertebrate assemblage structure and function, a reflection of biological integrity, in the study area. This finding may assist in the development of a numerical water-quality criterion for TP in this ecoregion, and illustrates the utility of bioassessment to environmental decision-making.  相似文献   
135.
Biological Report 88(41):1–103), assessment of credits and determination of a compensation ratio that reflects existing and/or potential functional condition in a mitigation bank has been a formidable task. This study presents a framework for a systematic approach for determination of credits and debits and subsequently the compensation ratio. A model for riparian systems is developed based on this framework that evaluates credits and debits for spatial and structural diversity, contiguity of habitats, invasive vegetation, hydrology, topographic complexity, characteristics of flood-prone areas, and biogeochemical processes. The goal of developing this crediting and debiting framework is to provide an alternative to the current methods of determining credits and debits in a mitigation bank and assigning mitigation ratios, such as best professional judgement or use of preset ratios. The purpose of this crediting and debiting framework is to develop a method that (1) can be tailored to evaluate ecological condition based on the target resources of a specific mitigation bank, (2) is flexible enough to be used for evaluation of existing or potential ecologic condition at a mitigation bank, (3) is a structured and systematic way to apply data and professional judgment to the decision-making process, (4) has an ecologically defensible basis, (5) has ease of use such that the level of expertise and time required to employ the method is not a deterrent to its application, and (6) provides a semiquantitative measure of the condition of aquatic resources that can be translated to a mitigation ratio.  相似文献   
136.
As inland wetlands face increasing pressure for development, both the federal government and individual states have begun reevaluating their respective wetland regulatory schemes. This article focuses first on the effectiveness of the past, present, and proposed federal regulations, most notably the Section 404, Dredge and Fill Permit Program, in dealing with shrinking wetland resources. The article then addresses the status of state involvement in this largely federal area, as well as state preparedness to assume primacy should federal priorities change. Finally, the subject of comprehensive legislation for wetland protection is investigated, and the article concludes with some procedural suggestions for developing a model law.  相似文献   
137.
There is an increasing need for the accurate delineation of wetlands for planning and conservation purposes. We propose a method based on vegetation zonation which requires three steps. The first step is to examine transects crossing the transition zone from marsh to upland. In each transect the uppermost occurrence of each plant species is located relative to a fixed survey point. The second step is to determine which of these species are hydrophytes (wetland plants). This is assessed using the presence or absence of morphological and physiological adaptations for growing in wet environments. Alternatively, a literature search using botanical manuals may suffice. The third step determines the upper limit of the wetland by finding the upper limit of the uppermost hydrophyte in each transect, and taking the mean value of these over all transects. This mean defines the boundary of the wetland. The method is illustrated using two marshes along the north shore of the St. Lawrence River in Ontario.  相似文献   
138.
A computerized geographic information system with site-specific change-detection capabilities was developed to document amounts, rates, locations, and sequences of loss of coastal marsh to open water in Barataria Basin, Louisiana, USA. Land-water interpretations based on 1945, 1956, 1969, and 1980 aerial photographs were used as input, and a modified version of the Earth Resources Laboratory Applications Software developed by the National Aeronautics and Space Administration was used as a spatial data base management system. Analysis of these data sets indicates that rates of marsh loss have increased from 0.36% per year in the 1945–56 period, to 1.03% per year in 1956–69, and to 1.96% per year in 1969–80. The patterns of marsh loss indicate that the combination of processes causing degradation of the marsh surface does not affect all areas uniformly. Marsh loss rates have been highest where freshwater marshes have been subject to saltwater intrusion. The increase in the wetland loss rates corresponds to accelerated rates of subsidence and canal dredging and to a cumulative increase in the area of canals and spoil deposits.  相似文献   
139.
Recent advances in remote sensing provide opportunities to map plant species and vegetation within wetlands at management relevant scales and resolutions. Hyperspectral imagers, currently available on airborne platforms, provide increased spectral resolution over existing space-based sensors that can document detailed information on the distribution of vegetation community types, and sometimes species. Development of spectral libraries of wetland species is a key component needed to facilitate advanced analytical techniques to monitor wetlands. Canopy and leaf spectra at five sites in California, Texas, and Mississippi were sampled to create a common spectral library for mapping wetlands from remotely sensed data. An extensive library of spectra (n=1336) for coastal wetland communities, across a range of bioclimatic, edaphic, and disturbance conditions were measured. The wetland spectral libraries were used to classify and delineate vegetation at a separate location, the Pacheco Creek wetland in the Sacramento Delta, California, using a PROBE-1 airborne hyperspectral data set (5m pixel resolution, 128 bands). This study discusses sampling and collection methodologies for building libraries, and illustrates the potential of advanced sensors to map wetland composition. The importance of developing comprehensive wetland spectral libraries, across diverse ecosystems is highlighted. In tandem with improved analytical tools these libraries provide a physical basis for interpretation that is less subject to conditions of specific data sets. To facilitate a global approach to the application of hyperspectral imagers to mapping wetlands, we suggest that criteria for and compilation of wetland spectral libraries should proceed today in anticipation of the wider availability and eventual space-based deployment of advanced hyperspectral high spatial resolution sensors.  相似文献   
140.
Conkle JL  White JR  Metcalfe CD 《Chemosphere》2008,73(11):1741-1748
A number of pharmaceutically active compounds (PhACs) have been detected in the aquatic environment as a result of discharges of municipal wastewater. In the state of Louisiana, USA, many municipalities treat wastewater using natural systems, such as lagoons and wetlands, rather than conventional wastewater treatment technologies. Nearly all research to date has focused on the fate of PhACs in conventional treatment plants, not constructed and natural wetlands. In the wastewater treatment plant (WWTP) for Mandeville, Louisiana, USA, wastewater flows of 7600 m3 d−1 are treated in a series of aeration lagoons (basins), followed by a constructed wetland and UV disinfection, before being discharged into a natural forested wetland (i.e. Bayou Chinchuba) and eventually, Lake Pontchartrain. Thirteen out of the 15 PhACs investigated were detected in the wastewater inflow to the treatment plant. Only 9 of the 13 compounds were above the detection limits at the treatment plant effluent. The concentrations of most compounds were reduced by greater than 90% within the plant, while carbamazepine and sotalol were only reduced by 51% and 82%, respectively. The percent reductions observed in the Mandeville system were greater than reduction rates reported for conventional WWTPs; perhaps due to the longer treatment time (30 days). Most target PhACs were not completely removed before discharge into Lake Pontchartrain, although their collective annual loading was reduced to less than 1 kg and down to ppb with significant potential for dilution in the large lake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号