首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   15篇
  国内免费   34篇
安全科学   23篇
废物处理   1篇
环保管理   137篇
综合类   72篇
基础理论   12篇
污染及防治   9篇
评价与监测   4篇
社会与环境   16篇
灾害及防治   12篇
  2023年   4篇
  2022年   10篇
  2021年   13篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   16篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   14篇
  2007年   15篇
  2006年   12篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   12篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
121.
ABSTRACT: The environment surrounding urban streams imposes constraints upon stream enhancement projects. Constraints include bridges, culverts, highways, sewer and water lines, lack of easements, and other floodplain structures. The consequences of failure of these infrastructure constraints can be significant and should be considered in the design process. Fault tree analysis provides a systematic technique for analyzing the interactions of events that could lead to infrastructure failure. A case study of a stream in Pittsburgh, Pennsylvania, shows that fault tree analysis can effectively model the interactions between the stream system and the infrastructure constraints and predict the most likely modes of failure. In addition, the relative success of alternative designs and failure mitigation techniques can be assessed using this analysis tool, lending insight into the urban stream enhancement design process. The method could also provide justification in the design permitting process and input for risk assessment.  相似文献   
122.
Abstract: Sediment is listed as one of the leading causes of water‐quality impairments in surface waters of the United States (U.S.). A water body becomes listed by a State, Territory or Tribe if its designated use is not being attained (i.e., impaired). In many cases, the prescribed designated use is aquatic health or habitat, indicating that total maximum daily loads (TMDL) targets for sediment should be functionally related to this use. TMDL targets for sediment transport have been developed for many ecoregions over the past several years using suspended‐sediment yield as a metric. Target values were based on data from “reference” streams or reaches, defined as those exhibiting geomorphic characteristics of equilibrium. This approach has proved useful to some states developing TMDLs for suspended sediment, although one cannot conclude that if a stream exceeds the target range, the aquatic ecosystem will be adversely impacted. To address this problem, historical flow‐transport and sediment‐transport data from hundreds of sites in the Southeastern U.S. were re‐examined to develop parameters (metrics) such as frequency and duration of sediment concentrations. Sites determined as geomorphically stable from field evaluations and from analysis of gauging‐station records were sorted by ecoregion. Mean‐daily flow data obtained from the U.S. Geological Survey were applied to sediment‐transport rating relations to determine suspended‐sediment load for each day of record. The frequency and duration that a given concentration was equaled or exceeded were then calculated to produce a frequency distribution for each site. “Reference” distributions were created using the stable sites in each ecoregion by averaging all of the distributions at specified exceedance intervals. As with the “reference” suspended‐sediment yields, there is a broad range of frequency and duration distributions that reflects the hydrologic and sediment‐transport regimes of the ecoregions. Ecoregions such as the Mississippi Valley Loess Plains (#74) maintain high suspended sediment concentrations for extended periods, whereas coastal plain ecoregions (#63 and 75) show much lower concentrations.  相似文献   
123.
ABSTRACT: Intact riparian zones are the product of an incredibly complex multitude of linkages between the geomorphic, hydrologic, and biotiè features of the ecosystem. Land‐use activities that sever or alter these linkages result in ecosystem degradation. We examined the relationship between riparian vegetation and channel morphology by sampling species composition and herbaceous root biomass in incised (down‐cut and widened) versus unincised (intact) sections of unconstrained reaches in three headwater streams in northeastern Oregon. Incision resulted in a compositional shift from wetland‐obligate plant species to those adapted to drier environments. Root biomass was approximately two times greater in unincised sections than incised sections and decreased with depth more rapidly in incised sections than in unincised sections. Total root biomass ranged from 2,153 g m‐2 to 4,759 g m‐2 in unincised sections and from 1,107 g m‐2 to 2,215 g m‐2 in incised sections. In unincised sections less than 50 percent of the total root biomass was found in the top 10 cm, with approximately 20 percent in successive 10‐cm depth increments. In contrast, incised sections had greater than 60 percent of the total root biomass in the top 10 cm, approximately 15 percent in the 10 to 20 cm depth, less than 15 percent in the 20 to 30 cm depth, and less than 10 percent in the 30 to 40 cm depth. This distribution of root biomass suggests a positive feedback between vegetation and channel incision: as incision progresses, there is a loss of hydrologic connectivity, which causes a shift to a drier vegetation assemblage and decreased root structure, resulting in a reduced erosive resistance capacity in the lower zone of the streambank, thereby allowing further incision and widening.  相似文献   
124.
ABSTRACT: A distributed watershed model combining kinematic wave routing, 1‐D dynamic channel‐flow routing, and 2‐D diffusive overland‐flow routing has been developed to simulate flooding and inundation levels of large watersheds. The study watershed was linked to a GIS database and was divided into an upstream mountainous area and a downstream alluvial plain. A kinematic wave routing was adopted at the mountainous area to compute the discharge flowing into the alluvial plain. A 1‐D dynamic channel routing solving the St. Venant equations by the Preissmann method was performed for the main channel of the alluvial plain, whereas a 2‐D overland‐flow routing solving the diffusion wave equation with the Alternating Direction Explicit scheme was used for floodplains. The above two routings were connected by weir‐link discharge formula. The parameters in the model were calibrated and independently verified by single‐event storms. An example application of flooding/inundation analysis was conducted for the Taichung station and the Woozi depot (Taiwan High Speed Rail). Suggested inundation‐proofing measures ‐ including raising ground surface elevation of the station and depot and building a waterproofing exterior wall and their combination ‐ were investigated. It was concluded that building the waterproofing exterior wall had a strong tendency to decrease peak inundation depth.  相似文献   
125.
为研究天津市中心城区北塘排污河恶臭污染特征,沿北塘排污河布设5个采样点位,分别在夏、秋、冬三季进行了系统采样.北塘排污河夏、秋、冬三季总检出浓度为23.842 5 mg/m^3,夏季(9.273 1mg/m^3)>冬季(8.388 4 mg/m^3)>秋季(6.181 0 mg/m^3),靖江桥和兵营桥两个点位受赵沽里泵站出水水质的影响较大,对周围的恶臭污染程度更为严重.北塘排污河污染物质总检出浓度组成特征:无机气体>含氧烃>烷烃>芳香烃>卤代烃>烯烃>硫化物,共检出物质67种,检出率大于70%的污染物共30种,广泛存在的物质为11种,主要恶臭污染物为少量的含氧烃、无机气体和硫化物,乙醛、丙酮、硫化氢和甲硫醇为北塘排污河主要恶臭污染物.  相似文献   
126.
人工湿地植物床-沟壕系统水质净化效果   总被引:4,自引:0,他引:4  
嘉兴市石臼漾湿地以仿拟自然界的植物床-沟壕系统为主要结构单元,以人工湿地生态根孔技术为核心净化技术,将河网源水主要水质指标提高了一个类别.为探索该系统以及根孔净化技术的优化途径,于2010年5~10月在湿地内构建了16个并联的植物床-沟壕单元,以正交设计手段研究根孔构筑方式、植物组合和强化介质3种因素对人工湿地植物床-沟壕系统水质净化效果的影响.综合考虑水质净化效果、工程施工难易程度、建设及运行维护成本等情况,推荐人工湿地植物床-沟壕系统的优化途径为:根孔构筑方式采用上、下两层秸秆填埋方式,植物组合优选芦苇+菰,在植物床局部采用适量方解石作为强化介质.比较了中试强化区和大工程区的水质净化效率,结果显示:强化后的植物床-沟壕系统具有进一步提升湿地水质净化效果的潜能,对总氮、总磷、氨氮等水质指标去除率提高幅度约为20%~40%.因此在保证湿地处理水量的前提下,控制大渠过水量、增加植物床-沟壕系统内根孔区的过流量可以发挥该系统更好的水质净化效果.  相似文献   
127.
张小艳  郝沛  张亚平 《环境工程》2017,35(10):161-165
在空气源热泵热水器中,对水平套管冷凝器环形通道内R134a的凝结换热特性进行实验研究。在冷凝器不同进水流量、进水温度时,实验测试了水平套管冷凝器凝结换热系数随热流密度、冷凝压力及干度的变化。实验工况为:冷凝器的进水流量为0.6~1.0 m~3/h,进水温度为15~60℃。实验结果表明:水平环形通道内R134a的凝结换热系数随热流密度和冷凝压力(温度)的升高而减小,当冷凝压力为1.3 MPa,热流密度由18 k W/m2增加至20.5 k W/m~2时,R134a的凝结换热系数减小了6.9%;当热流密度为15 k W/m~2,冷凝压力由1.78 MPa增大至1.83 MPa时,R134a的凝结换热系数减小了5.8%。R134a的局部凝结换热系数随干度的增大而增大,当冷凝压力为1.1 MPa,热流密度为18.3 k W/m~2,制冷剂干度由0.1增大至0.9时,R134a的局部凝结换热系数增大了24.4%。  相似文献   
128.
Brooks, Robert T. and Elizabeth A. Colburn, 2011. Extent and Channel Morphology of Unmapped Headwater Stream Segments of the Quabbin Watershed, Massachusetts. Journal of the American Water Resources Association (JAWRA) 47(1):158‐168. DOI: 10.1111/j.1752‐1688.2010.00499.x Abstract: Effective regulatory protection and management of headwater resources depend on consistent and accurate identification and delineation of stream occurrence. Published maps and digital resources fail to represent the true occurrence and extent of headwater streams. This study assessed the accuracy of mapped origins of “blue‐line” streams depicted on U.S. Geological Survey topographic maps, and, if present, the morphological characteristics of unmapped stream segments. We identified 170 mapped stream origins on the Quabbin Reservoir watershed, Massachusetts. Of 30 mapped stream origins, we identified and examined 26 unmapped stream segments above 25, with an average length of 502 m. Twenty unmapped tributaries occurred on 10 of the 26 unmapped segments, with an average length of 127 m. Wetland reaches occurred more frequently and were larger on unmapped than on mapped stream segments. A significant and complex stream network occurs above most mapped stream origins. For the Quabbin watershed, we estimate that there are 85.8 km of unmapped stream upgradient of 314.5 km of mapped streams. Reliance on mapped stream networks for regulatory standards allows for the potential disturbance or even destruction of the unmapped stream resources. Jurisdictional regulations and guidelines should be revised so that the occurrence of streams should require field validation.  相似文献   
129.
He, Laien and Gregory V. Wilkerson, 2011. Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge. Journal of the American Water Resources Association (JAWRA) 47(6):1298–1316. DOI: 10.1111/j.1752‐1688.2011.00567.x Abstract:  Bankfull discharge (Qbf) and bankfull channel geometry (i.e., width, Wbf; mean depth, Dbf; and cross‐section area, Abf) are important design parameters in stream restoration, habitat creation, mined land reclamation, and related projects. The selection of values for these parameters is facilitated by regional curves (regression models in which Qbf, Wbf, Dbf, and Abf are predicted as a function of drainage area, Ada). This paper explores the potential for the two‐year return‐period discharge (Q2) to improve predictions of Wbf, Dbf, and Abf. Improved predictions are expected because Q2 estimates integrate the effects of basin drainage area, climate, and geology. For conducting this study, 29 datasets (each representing one hydrologic region) spanning 14 states in the United States were analyzed. We assessed the utility of using Q2 by comparing statistical measures of regression model performance (e.g., coefficient of determination and Akaike’s information criterion). Compared to using Ada, Q2 is shown to be a “clearly superior” predictor of Wbf, Dbf, and Abf, respectively, for 21, 13, and 25% of the datasets. By contrast, Ada yielded a clearly superior model for predicting Wbf, Dbf, and Abf, respectively, for 0, 0, and 14% of the datasets. Our conclusion is that it alongside with developing conventional regional curves using Ada it is prudent to develop regional curves that use Q2 as an independent variable because in some cases the resulting model will be superior.  相似文献   
130.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号