首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   3篇
安全科学   2篇
环保管理   3篇
综合类   4篇
基础理论   10篇
社会与环境   2篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   3篇
  1990年   1篇
  1986年   1篇
排序方式: 共有21条查询结果,搜索用时 171 毫秒
11.
近年来发现褪黑激素不仅存在于动物中,而且在植物尤其是药用植物和食用植物中也普遍存在.目前国外对植物中的褪黑激素研究比较关注,国内仅有个别报道.本文综述了截止目前国内外对植物中褪黑激素含量与功能的研究进展,同时也介绍了褪黑激索的测量方法等.检测褪黑激素的方法有HPLC(高效液相法),RIA(放射免疫测定),LC-MS(液相色谱-质谱),GC-MS(气相色谱-质谱)等方法.褪黑激素在植物中有许多重要功能,如抗自由基抗氧化,促进植物生长和影响短日照植物开花,促进果实成熟以及抑制细胞程序性死亡等.因此研究褪黑激素在植物中的含量和功能对人们的生产生活具有较大的实际意义.最后讨论了植物中褪黑激素研究及其在农业生产中应用的前景.表1参41  相似文献   
12.
雄激素1,4-雄烯二酮(androstadienedione, ADD)和雄烯二酮(androstenedione, AED)主要用于人类和牲畜疾病的预防和治疗。近年来,ADD和AED的大量使用导致其在河流中广泛检出,甚至在多种鱼类体内亦有检出,且浓度较高。ADD和AED已被证实对鱼类具有生殖毒性和发育毒性,但ADD和AED在转录水平上对鱼类的影响鲜有报道。为探究ADD和AED分子水平毒性,本研究考察了斑马鱼胚胎暴露于ADD(4.48、30.0和231 ng·L~(-1))和AED(3.64、21.7和230 ng·L~(-1))144 h后,对其昼夜节律和下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis, HPG axis)通路中基因转录表达的影响。结果表明,所有浓度的ADD都显著上调了昼夜节律通路中生物钟基因(per1b)、核受体亚族1的D群基因(nr1d2b)、隐花色素基因(cry5)和si:ch211-132b12.7的转录水平,30.0和231 ng·L~(-1)的ADD下调了时钟节律调节因子基因(clocka)和芳香烃受体核转录蛋白样基因(arntl2)的转录水平。3.64 ng·L~(-1)AED显著增强了per1b和nr1d2b的转录表达。此外在HPG轴中,30.0 ng·L~(-1)ADD显著降低了促黄体生成素V亚基基因(lhb)的转录表达水平,而3.64 ng·L~(-1)AED显著上调了lhb的转录表达水平。值得注意的是,4.48ng·L~(-1)ADD和3.64 ng·L~(-1)AED均显著降低了细胞色素P450的11亚族基因(cyp11b)的转录表达水平。上述研究表明,ADD和AED对昼夜节律和HPG轴中相关基因的转录表达有显著性影响,对斑马鱼具有潜在的内分泌干扰风险。  相似文献   
13.
This study is aimed to clarify whether effect of low-level microwave radiation on human brain differs at different modulation frequencies. Resting EEG recordings were done on different groups of healthy volunteers. The 450 MHz microwave radiation modulated at 40 and 70 Hz (15 subjects) and 217 and 1,000 Hz (19 subjects) frequencies was applied. The results of our previous study at 7, 14 and 21 Hz modulation were included into analysis. Ten cycles of the exposure (1 min off and 1 min on) at each fixed modulation frequencies were applied. The field power density at the scalp was always 0.16 mW/cm2. Our results showed that microwave exposure increased the EEG energy at EEG frequencies lower or close to the modulation frequency. No effect was detected at EEG frequencies higher than the modulation frequency. Statistically significant changes were caused by exposure in the EEG alpha and beta frequency bands; no significant effect was detected in the theta band. Our results suggest that telecommunication devices with complex spectrum of modulation frequencies like mobile phone can affect all human EEG frequency bands.  相似文献   
14.
Accelerated aging of Drosophila strains with impaired detoxification of free radicals (Sod) and DNA repair (mus-210) under illumination as compared to the wild type has been demonstrated. In contrast, in a strain carrying a defective homolog of mammalian gene PCNA, the life span increases under conditions of round-the-clock illumination compared to constant darkness. The first review of the possible mechanisms underlying the effect of the illumination regime on the life span is presented, with special emphasis on the roles of the disturbance of normal circadian rhythms, increase in fecundity and physical activity (metabolic rate), and the neuroendocrine control of the insulin/IGF-1 pathway.  相似文献   
15.
环境孕激素和糖皮质激素的生态毒理效应:进展与展望   总被引:1,自引:0,他引:1  
孕激素和糖皮质激素的环境行为和生态毒理效应是即环境雌激素和雄激素之后近年来国内外环境激素研究的又一热点课题。由于广泛应用于临床医疗等,这两类物质通过污水处理厂不完全处理和人类农业或畜牧业活动的直接排放从而进入水体环境,进而对生态系统和人类健康产生潜在危害。环境监测数据显示,在地表水中,多种物质存在ng·L-1浓度水平;在污水处理厂进出水中,浓度水平更高,甚至达到数百ng·L-1。孕激素和糖皮质激素类物质主要通过激素受体途径发挥毒性效应,如孕激素受体(PR),糖皮质激素受体(GR)和盐皮质激素受体(MR)。对水生脊椎动物的内分泌系统干扰作用是目前研究的焦点。这两类物质能够影响脑垂体性腺轴转录水平和相应激素合成,影响性腺发育以及导致繁殖能力损伤。这一毒性效应甚至发生在环境浓度水平之下。除此之外,随着组学技术的广泛应用,更多的潜在毒性终点不断被发掘,如对昼夜节律系统和免疫应答的干扰作用。这些研究引导着对环境孕激素和糖皮质激素生态毒理学效应更加深入的理解。  相似文献   
16.
Seasonal differences in the locomotor activity pattern of Podarcis sicula held in constant conditions in the laboratory were found to be associated with systematic differences in both the freerunning period of locomotor rhythms () and the circadian activity time (). In order to establish whether the pineal played a role in the control of seasonal changes in circadian parameters, we examined the effects of pinealectomy in constant conditions on the locomotor behavior of lizards displaying the bimodal activity pattern typical of summer. In most lizards pinealectomy lengthened , shortened and abolished the bimodal activity pattern. Pinealectomy induced a sudden transition from the typical locomotor behavior of summer, characterized by a marked bimodal pattern, short and long , to the typical locomotor behavior of autumn, characterized by a unimodal pattern, a long and short . These results demonstrate that the pineal plays a central role in the seasonal reorganization of the circadian system that occurs in P. sicula.  相似文献   
17.
The daily patterns of task performance in honey bee colonies during behavioral development were studied to determine the role of circadian rhythmicity in age-related division of labor. Although it is well known that foragers exhibit robust circadian patterns of activity in both field and laboratory settings, we report that many in-hive tasks are not allocated according to a daily rhythm but rather are performed 24 h per day. Around-the-clock activity at the colony level is accomplished through the performance of some tasks by individual workers randomly with respect to time of day. Bees are initially arrhythmic with respect to task performance but develop diel rhythmicity, by increasing the occurrence of inactivity at night, prior to becoming foragers. There are genotypic differences for age at onset of rhythmicity and our results suggest that these differences are correlated with genotypic variation in rate of behavioral development: genotypes of bees that progressed through the age polyethism schedule faster also acquired behavioral rhythmicity at an earlier age. The ontogeny of circadian rhythmicity in honey bee workers ensures that essential in-hive behaviors are performed around the clock but also allows the circadian clock to be engaged before the onset of foraging. Received: 6 October 1997 / Accepted after revision: 28 March 1998  相似文献   
18.
The daily pattern of locomotor activity of the ruin lizard Podarcis sicula in its natural environment changes from unimodal in spring (with only one activity peak per day) to bimodal in summer (with two well-separated activity peaks per day) and it becomes unimodal again in autumn. In order to establish whether such seasonal changes in pattern might be at least in part controlled by endogenous temporal programs, lizards were collected at different times of the year and immediately after capture their locomotor behavior was tested in the laboratory under constant temperature (29°C) and in darkness. For some individuals tested in the laboratory the locomotor pattern previously expressed in the field was known. Seasonal differences in pattern have been unequivocally found to have an endogenous component, as most lizards in constant conditions retained the locomotor pattern shown in the field during the same season. Besides, in the bimodal lizards the freerunning period of locomotor rhythms () was significantly shorter and circadian activity time (a) longer than in the unimodal ones. Altogether the data are compatible with the idea that both the interdependent changes of and a and the changes in locomotor pattern occurring seasonally in the circadian activity rhythms of P. sicula would depend on changes in the phase relationship between mutually coupled oscillators which drive these rhythms. Correspondence to: A. Foà  相似文献   
19.
Colonies and isolated bees of the Cape honeybee, Apis mellifera capensis Esch., were observed for evidence of circadian rhythmicity under constant conditions. It was found that colonies develop free-running activity rhythms in self-selected light-dark cycles, which are slightly shorter than 24 h. The periods of the activity rhythms of individual isolated bees were longer than 24 h in self-selected light-dark and constant light, while they were shorter than 24 h in constant darkness. A greater variability in period was found in the isolated bees than in the colonies. When the rhythms of colonies and individual bees from these colonies were measured simultaneously, the activities of the isolated bees drifted with respect to that of the colonies, their period being either longer or shorter than that of their own colony. After 12 days of isolation of individual bees from their colony, all coincidence between the phases of the two rhythms was lost. We conclude that the periods of common activity and common rest of the bees within a colony result from a mutual (social) synchronization of the rhythms of the individual bees.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号