首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   106篇
  国内免费   230篇
安全科学   179篇
废物处理   13篇
环保管理   118篇
综合类   458篇
基础理论   336篇
环境理论   1篇
污染及防治   64篇
评价与监测   25篇
社会与环境   120篇
灾害及防治   25篇
  2024年   1篇
  2023年   23篇
  2022年   35篇
  2021年   46篇
  2020年   49篇
  2019年   43篇
  2018年   38篇
  2017年   42篇
  2016年   53篇
  2015年   54篇
  2014年   46篇
  2013年   71篇
  2012年   91篇
  2011年   108篇
  2010年   66篇
  2009年   73篇
  2008年   60篇
  2007年   72篇
  2006年   77篇
  2005年   41篇
  2004年   42篇
  2003年   31篇
  2002年   38篇
  2001年   24篇
  2000年   26篇
  1999年   20篇
  1998年   8篇
  1997年   9篇
  1996年   14篇
  1995年   12篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有1339条查询结果,搜索用时 140 毫秒
401.
402.
There is a growing awareness that cyclic population dynamics in vertebrate species are driven by a complex set of interactions rather than a single causal factor. While theory suggests that direct host-parasite interactions may destabilise population dynamics, the interaction between host and parasite may also influence population dynamics through indirect effects that result in delayed responses to either density or to life-history traits. Using empirical data on mountain hares (Lepus timidus) infected with a nematode parasite (Trichostrongylus retortaeformis), we developed an individual-based model (IBM) that incorporated direct effects and delayed life-history effects (DLHEs) of a macroparasite, alternative transmission mechanisms and seasonality in host population dynamics. The full model describes mean characteristics of observed mountain hare time series and parasite abundance, but by systematically removing model structure we dissect out dynamic influences of DLHEs. The DLHEs were weakly destabilising, increasing the propensity for cyclic dynamics and suggesting DLHEs could be important processes in host-parasite systems. Further, by modifying model structure we identify a strong influence of parasite transmission mechanism on host population stability, and discuss the implications for parasite aggregation mechanisms, host movement and natural geographical variation in host population dynamics. The effect of T. retortaeformis on mountain hares likely forms part of a complex set of interactions that lead to population cycles.  相似文献   
403.
When the development of gap models began about three decades ago, they became a new category of forest productivity models. Compared with traditional growth and yield models, which aim at deriving empirical relationships that best fit data, gap models use semi-theoretical relationships to simulate biotic and abiotic processes in forest stands, including the effects of photosynthetic active radiation interception, site fertility, temperature and soil moisture on tree growth and seedling establishment. While growth and yield models are appropriate to predict short-term stemwood production, gap models may be used to predict the natural course of species replacement for several generations. Because of the poor availability of historical data and knowledge on species-specific allometric relationships, species replacement and death rate, it has seldom been possible to develop and evaluate the most representative algorithms to predict growth and mortality with a high degree of accuracy. For this reason, the developers of gap models focused more on developing simulation tools to improve the understanding of forest succession than predicting growth and yield accurately.In a previous study, the predictions of simulations in two southeastern Canadian mixed ecosystem types using the ZELIG gap model were compared with long-term historical data. This exercise highlighted model components that needed modifications to improve the predictive capacity of ZELIG. The updated version of the model, ZELIG-CFS, includes modifications in the modelling of crown interaction effects, survival rate and regeneration. Different algorithms representing crown interactive effects between crowns were evaluated and species-specific model components that compute individual-tree mortality probability rate were derived. The results of the simulations were compared using long-term remeasurement data obtained from sample plots located in La Mauricie National Park of Canada in Quebec. In the present study, three forest types were studied: (1) red spruce-balsam fir-yellow birch, (2) yellow birch-sugar maple-balsam fir, and (3) red spruce-balsam fir-white birch mixed ecosystems. Among the seven algorithms that represented individual crown interactions, two better predicted the changes in basal area and individual-tree growth: (1) the mean available light growing factor (ALGF), which is computed from the proportion of light intercepted at different levels of individual crowns adjusted by the species-specific shade tolerance index, and (2) the ratio of mean ALGF to crown width. The long-term predicted patterns of change in basal area were consistent with the life history of the different species.  相似文献   
404.
Restoration of waterbird diversity and abundance is a key objective of river system management in Australia. Therefore, understanding the effects of climatic and hydrological variables on waterbird population dynamics is fundamental for successful river restoration programs. We investigated the population dynamics of waterbirds (total abundance) and seven functional waterbird groups in the floodplains of lower Murrumbidgee River. We found a general declining abundance trend from 1983 to 2007, except for the deep water foragers. We modelled the relative contribution of the climatic and hydrological factors to waterbird population decrease using the generalized additive model (GAM) framework after identifying the negative binomial distribution. Most of the seven functional groups were positively related to both annual rainfall and water usage, defined as the total water volume intercepted by the river reach, and the models indicated that rainfall was slightly more important. Temperature also played a role in waterbird abundance: the maximum summer temperature negatively influenced the abundance of dabbling ducks, shoreline foragers and fish eaters, while the minimum winter temperature positively affected the abundance of dabbling ducks and shoreline foragers. Overall, our results support the practice of providing environmental water for sustaining waterbird populations. However, environmental water provision is likely to be most effective when timed to coincide with antecedent rainfall.  相似文献   
405.
Theoretical approaches, such as the Lotka-Volterra framework, enable predictions about long term species coexistence based on stability criteria, but generally assume temporal constancy of system equations and parameters. In real world systems, temporal variability may interfere with the attainment of stable states. Managed grassland ecosystems in Northwestern Europe experience structural periodic fluctuations in environmental conditions: the seasons. In addition, periodic disturbances such as cutting are very common. Here we show, using a Lotka-Volterra system applied to grassland species with empirically derived parameters, that seasonal variability can result in a time dependent equilibrium and redirection of displacement processes.Parameter estimates differed between species and - in most cases - between the seasons. As a result, five of the fifteen tested species combinations had different outcomes of species interactions between seasons. This indicates that systems remain in dynamic transience over the year as the equilibrium changes and the species composition of the system follows the equilibrium without ever attaining it. The non-attainment of the steady state enables coexistence of species even if there is competitive exclusion in one of the seasons. For three of the fifteen species combinations, cutting frequency affected the long-term coexistence patterns. Cutting resets the biomass of competing species and favours during regrowth those species that have a high growth rate, which can alter species coexistence in comparison to a Lotka-Volterra model without cutting. The Lotka-Volterra framework with seasonally changing empirical parameters predicts coexistence as a possible outcome of systems that in component seasons are characterised by exclusion, and vice versa.  相似文献   
406.
The population dynamics of species interactions provides valuable information for life sciences. Lotka-Volterra equations (LVEs) are known to be the most popular model, and they are mainly applied to the systems of predation and competition. However, LVEs often fail to catch the population dynamics of mutualism; the population sizes of species increase infinitely under certain condition (divergence problem). Furthermore, LVEs never predicts the Allee effect in the systems of obligate mutualism. Instead of LVEs, several models have been presented for mutualism; unfortunately, they are rather complicated. It is, therefore, necessary to introduce a simpler theory for mutualism. In the present paper, we apply the lattice gas model which corresponds to the mean-field theory of the usual lattice model. The derived equations are cubic and contain only essential features for mutualism. In the case of obligate mutualism, the dynamics exhibits the Allee effect, and it is almost the same as in the male-female systems. In our model, the population sizes never increase infinitely, because our model contains not only intra- but also interspecific competitions. If the density of one species increases disproportionately in respect of its mutual partners, then this might imply downward pressure on the population abundance of the mutual partner species and such feedback would eventually act as a controlling influence on the population abundance of either species. We discuss several assumptions in our model; in particular, if both species can occupy in each cell simultaneously, then the interspecific competition disappears.  相似文献   
407.
Dynamical models usually assume that predation occurs between mature stages and/or between mature and immature stages. In this work a stage-structured discrete time model is developed for a system where intraguild predation takes place only in the course of immature stages of predator and its prey. Therefore, the proposed mathematical setup demands functional relations linking predation in immature life stages with survival and fecundity in mature stages. The behavior of the model is examined in order to investigate the interplay among predator attack rate, its satiation of prey consumption and the success of intraguild predator invasion.  相似文献   
408.
This paper is the first of three on the coffee production system consisting of (1) the coffee plant, (2) coffee berry borer (CBB) and (3) the role of CBB parasitoids. A previous simulation model of the coffee plant was developed using data from Brazil where coffee phenology is characterized by distinct seasonal flowering (Gutierrez et al., 1998). In contrast, flowering in Colombia is continuous with low seasonality. To capture the differences in coffee phenology and growth in the two climatic regions, the Gutierrez et al. (1998) model was modified using new data from Colombia.The modifications to the model include:
(1)
The effect of solar radiation on floral buds initiation;
(2)
An age structure population model to track the daily input and development of the floral buds;
(3)
The effect of leaf water potential on breaking dormancy in flower buds, and hence on the timing and intensity of flowering;
(4)
The incorporation of both the vegetative and the reproductive demands to predict the photosynthetic rate.
(5)
The effect of low temperature on photosynthesis and defoliation.
Other aspects of the model were re-interpreted and refinements made to generalize its structure for use across coffee varieties and geographic areas. The model, without modification, realistically simulates field data from Brazil and two Colombian locations having different varieties, patterns of rainfall and hence flowering phenology.The model will be used as the base trophic level for incorporating CBB and high tropic levels effects, and for the analysis of management options in the coffee production system.  相似文献   
409.
Several studies have proven the importance of field margins in sustaining biodiversity and other work has been done on the effect of field management on field margin flora. However few models have been built to predict the effects of field management on the flora. Our project addresses this need for a model capable of predicting the effect of cropping techniques and their timing on the flora of field margins. Primula vulgaris is a biodiversity indicator, characteristic of undisturbed flora and found in field margins and woodlands: its population has been declining for several years. We created a temporal matrix model of P. vulgaris populations on field margins, taking into account the effects of field, field margin and roadside management based on literature and expert knowledge. We then analysed its sensitivity to demographic parameters by comparing lambda (growth rate) sensitivity and elasticity. We compared the management parameter effect using the relative growth rate of the population after 6 years of simulation. Sensitivity analysis to biological parameters showed the importance of adult survival and seed production and germination. Results show that P. vulgaris is particularly sensitive to broad-spectrum herbicides and that other management techniques like early mowing, scything and scrub-killer (diluted broad-spectrum herbicide or specific herbicide) are less aggressive. Our simulations show that management of cash crops in Brittany is too aggressive for P. vulgaris populations and that 4-5 years of grassland in the adjacent field are necessary to maintain populations.  相似文献   
410.
We developed an age-structured population model of splitnose rockfish, Sebastes diploproa, in the Northeast Pacific Ocean. Splitnose rockfish is a bycatch species that co-occurs with several commercially important species that are currently declared overfished. Bycatch species are typically not the focus of stock assessment efforts because of their limited economic importance, but they may suffer the same population declines as species with which they co-occur. To examine the dynamics of splitnose rockfish for the first time, we analyzed data from three groundfish fisheries and four research surveys conducted in the Northeast Pacific Ocean. To develop a model, we used Stock Synthesis, a statistical framework for the construction of a population dynamics models utilizing both fishery-dependent and fishery-independent data. In the model, we reconstructed the total catch of the species back to 1900, estimated the dynamics of the stock spawning output and recruitment and evaluated biomass depletion relative to the stock's unfished state, as well as sources of uncertainty in model outputs. The results indicate that the splitnose rockfish is currently not overfished even though it has experienced several periods of abrupt decline in its biomass. Revisiting age data from earlier years, monitoring fishery discard, and investigating the spatial dynamics of splitnose rockfish is important to further improve the understanding of this species’ population dynamics, and decrease uncertainty in model results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号