首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   41篇
  国内免费   8篇
安全科学   16篇
废物处理   1篇
环保管理   44篇
综合类   76篇
基础理论   39篇
环境理论   6篇
污染及防治   10篇
评价与监测   6篇
社会与环境   21篇
灾害及防治   3篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   8篇
  2018年   8篇
  2017年   9篇
  2016年   8篇
  2015年   12篇
  2014年   12篇
  2013年   14篇
  2012年   15篇
  2011年   16篇
  2010年   6篇
  2009年   15篇
  2008年   4篇
  2007年   14篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   14篇
  2001年   6篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有222条查询结果,搜索用时 0 毫秒
51.
Legitimizing Fluvial Ecosystems as Users of Water: An Overview   总被引:6,自引:0,他引:6  
We suggest that fluvial ecosystems are legitimate users of water and that there are basic ecological principles guiding the maintenance of long-term ecological vitality. This article articulates some fundamental relationships between physical and ecological processes, presents basic principles for maintaining the vitality of fluvial ecosystems, identifies several major scientific challenges and opportunities for effective implementation of the basic ecological principles, and acts as an introduction to three specific articles to follow on biodiversity, biogeochemistry, and riparian communities. All the objectives, by necessity, link climate, land, and fresh water. The basic principles proposed are: (1) the natural flow regime shapes the evolution of aquatic biota and ecological processes, (2) every river has a characteristic flow regime and an associated biotic community, and (3) aquatic ecosystems are topographically unique in occupying the lowest position in the landscape, thereby integrating catchment-scale processes. Scientific challenges for the immediate future relate to quantifying cumulative effects, linking multidisciplinary knowledge and models, and formulating effective monitoring and assessment procedures. Additionally, forecasting the ecological consequences of changing water regimes is a fundamental challenge for science, especially as environmental issues related to fresh waters escalate in the next two to three decades.  相似文献   
52.
Runoff was measured from seven plots with different slopes nested in Tuanshangou catchment on the Loess Plateau to study effect of slopes on runoff in relation to rainfall regimes. Based on nine years of field observation and K-mean clusters, 84 rainfall events were grouped into three rainfall regimes. Rainfall regime A is the group of events with strong rainfall intensity, high frequency, and short duration. Rainfall regime C consists of events with low intensity, long duration, and infrequent occurrence. Rainfall regime B is the aggregation of events of medium intensity and medium duration, and less frequent occurrence. The following results were found: (1) Different from traditional studies, runoff coefficient neither decreased nor increased, but presented peak value on the slope surfaces; (2) For individual plot, runoff coefficients induced by rainfall regime A were the highest, and those induced by rainfall regime C were the lowest; Downslope, the runoff coefficients induced by three rainfall regimes presented the same changing trend, although the peak value induced by regime A occurred on a shorter slope length compared to those by regime B and C; (3) Scale effect on runoff induced by rainfall regime A was the least, and that induced by rainfall regime C was the largest. These results can be explained by the interactions of crusting, soil moisture content, slope length and gradient, and erosion units, etc., in the context of different rainfall regimes.  相似文献   
53.
Undamming Rivers: A Review of the Ecological Impacts of Dam Removal   总被引:22,自引:4,他引:22  
Dam removal continues to garner attention as a potential river restoration tool. The increasing possibility of dam removal through the FERC relicensing process, as well as through federal and state agency actions, makes a critical examination of the ecological benefits and costs essential. This paper reviews the possible ecological impacts of dam removal using various case studies. Restoration of an unregulated flow regime has resulted in increased biotic diversity through the enhancement of preferred spawning grounds or other habitat. By returning riverine conditions and sediment transport to formerly impounded areas, riffle/pool sequences, gravel, and cobble have reappeared, along with increases in biotic diversity. Fish passage has been another benefit of dam removal. However, the disappearance of the reservoir may also affect certain publicly desirable fisheries. Short-term ecological impacts of dam removal include an increased sediment load that may cause suffocation and abrasion to various biota and habitats. However, several recorded dam removals have suggested that the increased sediment load caused by removal should be a short-term effect. Preremoval studies for contaminated sediment may be effective at controlling toxic release problems. Although monitoring and dam removal studies are limited, a continued examination of the possible ecological impacts is important for quantifying the resistance and resilience of aquatic ecosystems. Dam removal, although controversial, is an important alternative for river restoration.  相似文献   
54.
The flow regime is regarded by many aquatic ecologists to be the key driver of river and floodplain wetland ecosystems. We have focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes: Firstly, flow is a major determinant of physical habitat in streams, which in turn is a major determinant of biotic composition; Secondly, aquatic species have evolved life history strategies primarily in direct response to the natural flow regimes; Thirdly, maintenance of natural patterns of longitudinal and lateral connectivity is essential to the viability of populations of many riverine species; Finally, the invasion and success of exotic and introduced species in rivers is facilitated by the alteration of flow regimes. The impacts of flow change are manifest across broad taxonomic groups including riverine plants, invertebrates, and fish. Despite growing recognition of these relationships, ecologists still struggle to predict and quantify biotic responses to altered flow regimes. One obvious difficulty is the ability to distinguish the direct effects of modified flow regimes from impacts associated with land-use change that often accompanies water resource development. Currently, evidence about how rivers function in relation to flow regime and the flows that aquatic organisms need exists largely as a series of untested hypotheses. To overcome these problems, aquatic science needs to move quickly into a manipulative or experimental phase, preferably with the aims of restoration and measuring ecosystem response.  相似文献   
55.
    
The hybrid mixture of combustible dusts and flammable gases/vapours widely exist in various industries, including mining, petrochemical, metallurgical, textile and pharmaceutical. It may pose a higher explosion risk than gas/vapor or dust/mist explosions since the hybrid explosions can still be initiated even though both the gas and the dust concentration are lower than their lower explosion limit (LEL) values. Understanding the explosion threat of hybrid mixtures not only contributes to the inherent safety and sustainability of industrial process design, but promotes the efficiency of loss prevention and mitigation. To date, however, there is no test standard with reliable explosion criteria available to determine the safety parameters of all types of hybrid mixture explosions, nor the flame propagation and quenching mechanism or theoretical explanation behind these parameters. This review presents a state-of-the-art overview of the comprehensive understanding of hybrid mixture explosions mainly in an experimental study level; thereby, the main limitations and challenges to be faced are explored. The discussed main contents include the experimental measurement for the safety parameters of hybrid mixtures (i.e., explosion sensitivity and severity parameters) via typical test apparatuses, explosion regime and criterion of hybrid mixtures, the detailed flame propagation/quenching characteristics behind the explosion severities/sensitivities of hybrid mixtures. This work aims to summarize the essential basics of experimental studies, and to provide the perspectives based on the current research gaps to understand the explosion hazards of hybrid mixtures in-depth.  相似文献   
56.
The Brahmaputra changes its course and pattern along with its current flow very frequently especially in its upper stretches and this has a strong bearing on its hydrobiology. The hydro-geological pattern of the Brahmaputra has resulted in a possible zonation of the river into five major types of fish habitat. Altogether 167 fish species have been recorded from the upper Brahmaputra of which about 30 percent may be considered as ornamental varieties. Again, according to their seasonal availability, the fish fauna has been grouped into four principal categories. Among all the hydrological factors, flood impulse is probably the strongest factor that regulates other limnological conditions and faunal distribution. Usually, there are three or four high floods between May and October and fish migration is intimately related to this flood regime. During the dry season fishing is mostly restricted to near the confluents of tributaries or channels and also at river meanders. However, large-scale felling of trees in the catchment areas and construction of embankments along the river banks have altered the riverine ecosystem drastically, as a result of which, the river has become heavily silted and the connecting channels of the floodplain lakes are also dammed. Consequently, fishes and other megafauna are deprived of adequate water cover, food supply and breeding grounds. An ecohydrological approach has been advocated for habitat restoration.  相似文献   
57.
    
Regression models of mean and mean annual maximum (MAM) cover were derived for two categories of periphyton cover (filaments and mats) using 22 years of monthly monitoring data from 78 river sites across New Zealand. Explanatory variables were derived from observations of water quality variables, hydrology, shade, bed sediment grain size, temperature, and solar radiation. The root mean square errors of these models were large (75‐95% of the mean of the estimated values). The at‐site frequency distributions of periphyton cover were approximated by the exponential distribution, which has the mean cover as its single parameter. Independent predictions of cover distributions at all sites were calculated using the mean predicted by the regression model and the theoretical exponential distribution. The probability that cover exceeds specified thresholds and estimates of MAM cover, based on the predicted distributions, had large uncertainties (~80‐100%) at the site scale. However, predictions aggregated by classes of an environmental classification accurately predicted the proportion of sites for which cover exceeded nominated criteria in the classes. The models are useful for assessing broad‐scale patterns in periphyton cover and for estimating changes in cover with changes in nutrients, hydrological regime, and light.  相似文献   
58.
我国部分地方规定了水污染物排放许可证制度,由于此类法律文件法律效力的低层级性,制约着水污染防治的司法与执法实践。提高设定该制度法律文件效力位阶,不仅可以解决调整该制度法制不统一状况,而且为其进行法律规制提供了直接、具体的法律依据。对促使排污主体科学、合理排污将起到积极作用。  相似文献   
59.
    
Alterations to flow regimes for water management objectives have degraded river ecosystems worldwide. These alterations are particularly profound in Mediterranean climate regions such as California with strong climatic variability and riverine species highly adapted to the resulting flooding and drought disturbances. However, defining environmental flow targets for Mediterranean rivers is complicated by extreme hydrologic variability and often intensive water management legacies. Improved understanding of the diversity of natural streamflow patterns and their spatial arrangement across Mediterranean regions is needed to support the future development of effective flow targets at appropriate scales for management applications with minimal resource and data requirements. Our study addresses this need through the development of a spatially explicit reach‐scale hydrologic classification for California. Dominant hydrologic regimes and their physio‐climatic controls are revealed, using available unimpaired and naturalized streamflow time‐series and generally publicly available geospatial datasets. This methodology identifies eight natural flow classes representing distinct flow sources, hydrologic characteristics, and catchment controls over rainfall‐runoff response. The study provides a broad‐scale hydrologic framework upon which flow‐ecology relationships could subsequently be established towards reach‐scale environmental flows applications in a complex, highly altered Mediterranean region.  相似文献   
60.
我国土壤环境管理政策制度分析及发展趋势   总被引:1,自引:2,他引:1  
我国土壤环境修复属于政策驱动型产业,完善政策制度和标准体系对推动我国土壤修复健康发展、保障土壤环境安全具有重要意义。本文从国家和地方两个层面,系统分析了我国当前已经发布的土壤污染防治相关环境管理政策法规和技术标准现状、内容特点及其在推进土壤环境管理过程中发挥的作用,总结归纳出国家层面环境管理文件和地方层面制度建设的不同特点。针对国家层面和地方层面环境管理文件的不同特点,结合\"十三五\"国家土壤污染防治行动计划体现的土壤环境管理总体思路和任务要求,借鉴国际土壤污染防治制度建设经验,提出\"十三五\"时期我国土壤污染防治政策制度和标准体系建设的主要方向,即\"一中心、三方向\",包括基于风险管理的分级分类核心思想,重点提高政策制度操作性、提高技术标准的精细化和针对性、提高关键环境管理的有效性三个主要方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号