首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   78篇
  国内免费   222篇
安全科学   13篇
废物处理   13篇
环保管理   46篇
综合类   381篇
基础理论   42篇
污染及防治   29篇
评价与监测   51篇
社会与环境   28篇
灾害及防治   1篇
  2024年   3篇
  2023年   17篇
  2022年   34篇
  2021年   32篇
  2020年   41篇
  2019年   41篇
  2018年   55篇
  2017年   38篇
  2016年   33篇
  2015年   21篇
  2014年   18篇
  2013年   27篇
  2012年   33篇
  2011年   34篇
  2010年   23篇
  2009年   18篇
  2008年   17篇
  2007年   15篇
  2006年   8篇
  2005年   15篇
  2004年   11篇
  2003年   11篇
  2002年   14篇
  2001年   12篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有604条查询结果,搜索用时 15 毫秒
531.
基于“3S”的红树林资源调查方法研究   总被引:20,自引:0,他引:20  
论文研究了“3S”技术与地面调查相结合进行红树林资源调查的技术方法。以SPOT和Landsat7ETM+为信息源,经预处理后在GIS支持下进行目视判读和编制工作手图,实地采用GPS实测和目测勾绘修正小班界线,进入林内调查林况因子。结果表明,群落类型调查精度为100%;小班面积平均误差、小班周界平均位移、小班中心位置平均相对位移分别为11.8%、18.3m、13.1%,远小于常规方法(1∶10000地形图目测勾绘)的76.6%、108.7m和274.9%;效率比GPS实测高2.04倍,有效地解决了传统方法调查中存在的红树林空间位置和分布境界线定位准确性差、面积精度低,一般航天遥感调查分类精度低和GPS方法效率低等问题。  相似文献   
532.
珠江三角洲地区重点VOC排放行业的排放清单   总被引:37,自引:5,他引:37       下载免费PDF全文
根据收集的珠江三角洲(珠三角)重点挥发性有机物(VOC)排放行业的活动水平数据,采用近年来VOC估算方面的研究成果及估算方法,建立了该地区2006年重点挥发性有机物排放行业和分城市的VOC排放清单.结果表明:珠江三角洲地区2006年重点挥发性有机物排放行业VOC排放总量为416.9kt,其不确定性(95%置信区间)为302.5~689.6kt(-31%~58%);家具制造业、建筑涂料使用、制鞋业是珠江三角洲重点VOC排放行业的主要来源,分别占总排放量的23.3%,21.2%和17.5%;东莞是珠江三角洲地区2006年重点挥发性有机物排放行业VOC排放量贡献最大的城市,其次是深圳,两者排放量分别占总排放量的23.6%和21.9%,主要的排放亦来源于家具制造业、建筑涂料使用与制鞋业.缺乏本地排放因子和良好的活动水平数据是本研究VOC排放量估算中主要的不确定性来源.  相似文献   
533.
Though characterized by a scarcity of water, West Asia and North Africa region has a large number of wetlands of various types supporting a rich biodiversity. However, the government efforts to reverse the trend of wetlands degradation fall short of the policy goals due to various reasons. The paper outlines the priorities for wetlands conservation in the region.  相似文献   
534.
In countries having limited resources, it is difficult to assess urban air quality on contemporaneously, due to the absence of on-line information about air pollution levels and emission rates. An alternative approach is recommended for smaller cities with lower demands of resources. The applied scheme consists of a database of air pollution sources (NO x and CO from industry, traffic, and domestic heating), the simple Gaussian-plume model AEROPOL and a series of measurements by passive monitors. This method was used in Tartu, a small city situated in the valley of the river Emajõgi, within a landscape with noteworthy topographical variations. Simulations of annual average and maximal concentrations were performed, and a fair agreement obtained with NO2 monitoring results from passive Palmes monitors. Inventories of pollution sources in 1998 revealed that official statistics of stationary sources covered 64% of SO2,36% of CO, 37% of NO x and 32% of total particulate matter emissions. Recommendations for measures for reducing air pollution levels and for further investigations towards improving air quality assessment and management, are given.  相似文献   
535.
粒度乘数用来表征道路扬尘中不同粒径颗粒物的分布情况,是构建道路扬尘排放清单的一个重要参数,直接影响排放清单的不确定性.2016年5—6月采用样方吸尘法采集乌鲁木齐市不同区域、不同类型道路积尘样品,通过再悬浮和便携式气溶胶粒径谱仪(Grimm1.109)分析得到样品的粒径数据,并利用校正公式计算得到道路扬尘K2.5(PM2.5粒度乘数).结果显示:快车道K2.5中位值为0.079 g/VKT,略大于慢车道(0.074 g/VKT),非参数检验结果P=0.56(>0.05),表明两种车道之间K2.5差异无统计学意义;次干道、高速路、支路、主干道、快速路、环线、省道、县道和国道的道路扬尘K2.5范围分别为0.083~0.112、0.063~0.093、0.055~0.154、0.047~0.107、0.065~0.090、0.697~0.090、0.060~0.080、0.046~0.118和0.051~0.069 g/VKT,这与车流量、车速和平均车质量等因素有关;K2.5中位值存在区域差异,天山区最大(0.091 g/VKT),其次是米东区(0.083 g/VKT)、水磨沟区(0.082 g/VKT)和头屯河区(0.081 g/VKT),乌鲁木齐县最小(0.064 g/VKT),利用单因素方差分析对其差异显著性进行检验,结果为P=0.107(>0.05),表明不同区域间K2.5中位值无显著性差异.乌鲁木齐市各地区道路扬尘K2.5中位值(0.064~0.091 g/VKT)小于美国AP-42中推荐的经验参数(0.15 g/VKT).研究显示,在建立乌鲁木齐市道路扬尘排放清单时,若直接采用美国AP-42推荐值,会加大排放清单的不确定性,因此需要通过校正公式对道路扬尘K2.5进行校正,获得本地化粒度乘数值.   相似文献   
536.
移动源排放VOCs特征及臭氧生成潜势研究—以兰州市为例   总被引:4,自引:0,他引:4  
高浓度近地面臭氧(O_3)污染是国内外许多城市面临的大气污染问题,且近年来O_3浓度呈逐渐升高的趋势.随着城市规模日益扩大,移动源成为VOCs的主要排放源之一,对移动源的O_3生成潜势进行评估,并识别其关键物种和重点污染区域,可为城市O_3控制对策的制定提供科学依据.本文以兰州市移动源为例,结合排放系数、交通流量及相关统计数据,建立兰州市VOCs移动源排放清单,并使用最大增量反应活性(MIR)估算移动源VOCs的臭氧生成潜势(OFP).结果表明,兰州市汽油车是移动源中最主要的OFP贡献源类,占移动源的71.12%;烯烃和芳香烃为移动源总OFP主要的贡献者,主要贡献物种为:乙烯、丙烯、甲醛、3-甲基-1-丁烯、甲苯、正丁烯、乙炔、间二甲苯、1,2,4-三甲基苯、邻二甲苯,这10个物种的OFP占移动源总OFP的67.29%;根据兰州市移动源VOCs排放的OFP贡献空间分布结果,移动源VOCs排放的重点控制区域为城关区和七里河区.  相似文献   
537.
伴随着超低排放技术在中国火电行业的广泛应用,中国火电行业排放水平已发生了显著变化.故现有火电排放清单排放因子和排放量等无法反映当前火电污染物排放提标情况.基于全国火电在线监测(CEMS)、环境统计和排污许可等数据,提出一种自下而上逐企业建立中国火电行业排放清单的方法.与传统方法相比较,该方法的特点是更加全面的考虑了火电行业超低技术,实际排放浓度与活动水平等综合因素.作为实例,本文基于所提出的火电行业排放清单的方法计算了新的2015年中国火电行业排放清单(HPEC).结果表明2015年全国火电厂SO2、NOx和烟尘平均排放浓度范围分别为7.88~208.57、40.33~238.2和5.86~53.93mg/m3.北京、上海火电排放基本达到《煤电节能减排升级与改造行动计划(2014~2020年)》制定的超低改造目标;绝大部分的省份SO2、NOx在线监测均值小于排污许可执行标准均值.中国燃煤机组的SO2、NOx、烟尘排放因子平均值分别为0.67、0.76、0.16g/kg(以入炉煤计).全国火电CO、VOCs、NOx、SO2、PM10、PM2.5总排放量分别为403.87、10.73、122.94、146.68、28.72和22.80万t/a,平均排放绩效值分别为1.06、0.03、0.32、0.39、0.08、0.06g/(kW×h).  相似文献   
538.
改革开放以来,随着我国社会经济发展、居民生活水平提高,城市生活垃圾与日俱增,其妥善处理是我国各级政府面临的重要环境管理问题之一.本文通过系统收集和整理1979~2016年我国城市生活垃圾产生和处理的政府统计及相关中英文文献数据,分析了我国城市生活垃圾产生和处理的时空演变特征,建立了全国与各地区城市生活垃圾物理组分数据清单.研究结果表明:1979~2016年我国城市生活垃圾产生量显著增长至2016年的2.04亿t,以厨余类为主要成分.全国城市生活垃圾无害化处理率达到96.6%,无害化处理方式逐渐转向为焚烧为主、填埋补充的技术格局.我国各地区城市生活垃圾产生量、产生量增速、物理组分、无害化处理率和处理能力等存在时空差异,各地区应因地制宜,结合国家专项规划,提高生活垃圾减量化和资源化水平,弥补无害化处理缺口.  相似文献   
539.
根据调查收集到的2015年四川省工程机械、农业机械、铁路机车、船舶和民航飞机的保有量、活动水平等数据,采用"排放因子法"计算了非道路移动源大气污染物排放量,分析了2015四川省非道路移动源的尾气污染排放特征,并建立了3km×3km的网格化排放清单.结果表明,2015年四川省非道路移动源排放的PM10为1.38×104t,PM2.5为1.25×104t,NOx为1.83×105t,THC为2.98×104t,CO为1.21×105t.工程机械对污染物的贡献率相对较高,占比达到70%;其次为农业机械,对NOx和PM的贡献占比分别达到15%.工程机械和农业机械的排放主要集中在夏季和秋季,而飞机、铁路机车和船舶的时间变化较不明显;而从空间分布来看,高排放源主要分布于成都平原地区和川南地区.  相似文献   
540.
基于1973~2013年8次省森林清查数据以及实测数据改进的生物量蓄积量转换参数,利用生物量转换因子连续函数法,研究了近40a黑龙江省森林碳储量及其动态变化.结果表明:黑龙江省森林碳储量从1973~1976年的1159.35 TgC下降到2009~2013年的833.99 TgC,其中天然林减少387.51 TgC,人工林增加62.15 TgC;森林总体表现为碳源(-10.88 TgC/a),主要归因于天然林面积的减少.不同森林类型的碳储量存在较大差异,桦木、落叶松和阔叶混是碳储量的主要贡献者;大多数森林类型的碳密度呈上升趋势.森林以中、幼龄林为主,中龄林碳储量占同期全省总量的27.9%~46.6%,其他龄组的碳储量均呈减少趋势,以成熟林最为明显(201.17 TgC);幼龄林、中龄林和近熟林的碳密度分别增加2.20、3.21和3.43MgC/hm2,成熟林和过熟林则有所下降;不同龄组森林面积和碳密度的变化是导致其碳储量变化的主要原因.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号