首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5422篇
  免费   519篇
  国内免费   1380篇
安全科学   377篇
废物处理   295篇
环保管理   1108篇
综合类   3147篇
基础理论   772篇
环境理论   2篇
污染及防治   703篇
评价与监测   124篇
社会与环境   544篇
灾害及防治   249篇
  2024年   13篇
  2023年   72篇
  2022年   138篇
  2021年   153篇
  2020年   174篇
  2019年   163篇
  2018年   170篇
  2017年   196篇
  2016年   226篇
  2015年   224篇
  2014年   257篇
  2013年   463篇
  2012年   433篇
  2011年   421篇
  2010年   331篇
  2009年   329篇
  2008年   243篇
  2007年   448篇
  2006年   382篇
  2005年   350篇
  2004年   314篇
  2003年   269篇
  2002年   229篇
  2001年   153篇
  2000年   200篇
  1999年   197篇
  1998年   101篇
  1997年   115篇
  1996年   96篇
  1995年   79篇
  1994年   72篇
  1993年   94篇
  1992年   46篇
  1991年   46篇
  1990年   31篇
  1989年   12篇
  1988年   9篇
  1986年   11篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   6篇
  1979年   12篇
  1978年   6篇
  1977年   7篇
  1975年   2篇
  1973年   7篇
  1972年   3篇
  1971年   7篇
  1970年   1篇
排序方式: 共有7321条查询结果,搜索用时 15 毫秒
21.
通过水热法合成Bi2WO6,并利用XPS,XRD,BET,UV-Vis和SEM等方法对样品进行了表征;通过光催化性能实验考察了Bi2WO6投加量,溶液pH值对普伐他汀(PR)降解效果的影响;通过自由基捕获实验及中间产物的鉴定探明了Bi2WO6光催化降解PR过程的主要活性自由基,中间产物及降解机理,并采用发光细菌急性毒性试验评估了PR降解前后的毒性.结果表明,所制备的Bi2WO6是由大量纳米片组成的正交晶系花瓣状微球,各元素物质的量比为Bi:W:O=2.5:1:6.7,比表面积为26.67m2/g,带隙能为2.74eV;光催化性能结果表明,对于10mg/L PR,当溶液pH=6.5,Bi2WO6投加量为0.4g/L时降解效果最佳,降解率可达80.6%,矿化度为40.2%;自由基捕获实验结果表明降解过程中h+起主要的氧化作用,·OH和·O2-的氧化起辅助作用.基于活性自由基和中间产物的鉴别结果提出了Bi2WO6光催化降解PR的机理,即以h+为主,·OH和·O2-为辅联合攻击PR分子中C-C键,C=C双键,酯键等化学键,进而将其分解为易降解小分子有机物.另外,毒性测试结果表明PR经光催化降解后的小分子产物与PR原液相比毒性并没有增强.  相似文献   
22.
水稻土中五氯酚的降解转化动态及其对微生物群落的影响   总被引:1,自引:0,他引:1  
采用室内培养实验,研究厌氧条件下水稻土中五氯酚(Pentachlorophenol,PCP)的还原转化与微生物群落组成变化。结果表明,室内培养实验条件下,PCP在水稻土样品中降解比较迅速,在反应17 d时,实验添加的PCP能够完全被还原转化。高通量测序结果显示PCP的添加明显改变了水稻土壤的微生物群落结构,其微生物多样性显著下降,在PCP降解完之后逐渐恢复。原始土壤以及添加PCP的土壤样品中其优势微生物主要分布在变形菌门(Proteobacteria)。PCP添加刺激了水稻土中伯克氏菌科(Burkholderiaceae)、丛毛单胞菌科(Comamonadaceae)、地杆菌科(Geobacteraceae)、红环菌科(Rhodocyclaceae)和假单胞菌科(Pseudomonadaceae)等脱氯相关的微生物菌群繁殖,成为PCP降解过程中的优势菌群,有利于PCP还原降解。本研究结果可为水稻土中有机氯农药污染物的微生物降解脱毒提供理论依据。  相似文献   
23.
This paper presents development of a first approximation of a Namibian, national level, land degradation monitoring system. The process involved a large number of stakeholders and led to the definition of four primary indicators that were regarded as related to land degradation in Namibia: population pressure, livestock pressure, seasonal rainfall and erosion hazards. These indicators were calculated annually for the period 1971–1997. Annual land degradation risk maps were produced for the same period by combining the indicators. A time series analysis of results generated by indicators was undertaken at two sites. The analysis revealed a general trend towards an increased land degradation risk over the period 1971–1997. A decrease in annual rainfall and an increase in livestock numbers caused this negative trend at one site, while decreased annual rainfall and increased human population were the causes at a second site. Evaluation of resulting maps through direct field observations and long-term monitoring at selected study sites with different conditions relevant for the indicators defined, is an essential next step.  相似文献   
24.
This paper argues on both theoretical and empirical grounds that, beyond a certain point, there is an unavoidable conflictbetween economic development (generally taken to mean 'materialeconomic growth') and environmental protection. Think for a moment of natural forests, grasslands, marine estuaries, salt marshes, and coral reefs; and of arable soils, aquifers, mineraldeposits, petroleum, and coal. These are all forms of 'natural capital' that represent highly-ordered self-producing ecosystemsor rich accumulations of energy/matter with high use potential (low entropy). Now contemplate despoiled landscapes, eroding farmlands, depleted fisheries, anthropogenic greenhouse gases,acid rain, poisonous mine tailings and toxic synthetic compounds.These all represent disordered systems or degraded forms of energy and matter with little use potential (high entropy). The main thing connecting these two states is human economic activity. Ecological economics interprets the environment-economyrelationship in terms of the second law of thermodynamics. The second law sees economic activity as a dissipative process. Fromthis perspective, the production of economic goods andservices invariably requires the consumption of available energy and matter. To grow and develop, the economynecessarily 'feeds' on sources of high-quality energy/matter first produced by nature. This tends to disorder and homogenizethe ecosphere, The ascendance of humankind has consistently been accompanied by an accelerating rate of ecological degradation, particularly biodiversity loss, the simplificationof natural systems and pollution. In short, contemporary political rhetoric to the contrary, the prevailing growth-oriented global development paradigm is fundamentally incompatible with long-term ecological and social sustainability. Unsustainability is not a technical nor economic problem as usually conceived, but rather a state of systemic incompatibilitybetween a economy that is a fully-contained, growing, dependent sub-system of a non-growing ecosphere. Potential solutions fly inthe face of contemporary development trends and cultural values.  相似文献   
25.
Photocatalytic degradation of phenol   总被引:3,自引:0,他引:3  
In this study photocatalytic degradation of phenol in thepresence of UV irradiated TiO2 catalyst andH2O2was investigated. Effects of TiO2 andH2O2concentrations and pH on photocatalytic degradation were examined. The rate constants for photocatalytic degradation wereevaluated as a function of TiO2 and H2O2 concentrations and pH of the solution. It was found thatphotodegradation is an effective method for the removal of phenoland disappearance of phenol obeyed first order kinetics. The amount of CO2h produced during photocatalytic degradation wascorresponding to the complete mineralization. Photodegradationcan be an alternative method for the treatment of phenol containing wastewaters.  相似文献   
26.
The Chesapeake Bay benthic index of biotic integrity (B-IBI) was developed to assess benthic community health and environmental quality in Chesapeake Bay. The B-IBI provides Chesapeake Bay monitoring programs with a uniform tool with which to characterize bay-wide benthic community condition and assess the health of the Bay. A probability-based design permits unbiased annual estimates of areal degradation within the Chesapeake Bay and its tributaries with quantifiable precision. However, of greatest interest to managers is the identification of problem areas most in need of restoration. Here we apply the B-IBI to benthic data collected in the Bay since 1994 to assess benthic community degradation by Chesapeake Bay Program segment and water depth. We used a new B-IBI classification system that improves the reliability of the estimates of degradation. Estimates were produced for 67 Chesapeake Bay Program segments. Greatest degradation was found in areas that are known to experience hypoxia or show toxic contamination, such as the mesohaline portion of the Potomac River, the Patapsco River, and the Maryland mainstem. Logistic regression models revealed increased probability of degraded benthos with depth for the lower Potomac River, Patapsco River, Nanticoke River, lower York River, and the Maryland mainstem. Our assessment of degradation by segment and water depth provided greater resolution of relative condition than previously available, and helped define the extent of degradation in Chesapeake Bay.  相似文献   
27.
Traditionally, decision-makers have relied on economic impactestimates derived from conventional economy-wide models. Conventional models lack the environmental linkages necessary for examining environmental stewardship and economic sustainability, and in particular the ability to assess the impact of policies on natural capital. This study investigatesenvironmentally extended economic impact estimation on a regionalscale using a case study region in the province of Alberta knownas the Foothills Model Forest (FMF). Conventional economic impactmodels are environmentally extended in pursuit of enhancingpolicy analysis and local decision-making. It is found that theflexibility of the computable general equilibrium (CGE) modelingapproach offers potential for environmental extension, with a solid grounding in economic theory. The CGE approach may be the tool of the future for more complete integrated environment andeconomic impact assessment.  相似文献   
28.
天然石材产品放射性水平及其防护管理   总被引:2,自引:0,他引:2  
简介了我国天然石材产品中放射水平、分类控制使用的现状以及应用天然石材装饰室内所致辐射对人体健康产生的不良影响,提出了加强对天然石材产品使用过程中的监督、监测和管理的建议。  相似文献   
29.
A main goal of investigations is to determine could a soilrespiration be an indicator of the soil pollution. In this case a measured levelof the soil oxygen consumption depends of its pollution. It alsomeans that the pollution reduces biological processes in edaphon.Investigated soil samples were taken from polluted andnon-polluted places in the Baix Llobregat near Barcelona (Catalonia, NE Spain). Soil samples were taken from the top ofsoil (0–5 cm) without a litter. Soil analysis were done, determining percentage shares of coarsefragments, coarse sand, fine sand, coarse silt, fine silt, clay,CaCO3, organic matter as well as water pH and conductivityCE (1:5 [mS cm-1]). Also were determined (in mg kg-1)quantities of heavy metals, as Fe, Al, Mn, Zn, Cr, Ni, V, Cu, Cd, Pb.The soil respiration was investigated in temperatures15 and 30 °C and with controlled humidity.The respiration in 30 °C is number of times greater thenin 15 °C both for polluted and non-polluted soils.Particularly high coefficients of correlation between the soilrespiration and soil pollution in polluted soils were obtainedfor Pb: r = 0.75 in 15 °C and r = 0.98 in30 °C; for Ba: 0.90 and 0.57; for V: 0.99 and 0.81. In non-polluted soils highest correlation coefficients are for Pb: r = 0.70 in 15 °C; Fe: 0.60 and 0.72; Al: 0.68 and0.64; Mn: 0.51 and 0.66; Ba: 0.63 and 0.61; Cr: 0.94 and0.70; Ni: 0.64 and 0.65; Cu: 0.69 and 0.48; as well as V: 0.62in 15 °C; and Cd: 0.69 in 15 °C.This way the soil respiration could be a good indicator of the soil pollution.  相似文献   
30.
The Impact of Landsat Satellite Monitoring on Conservation Biology   总被引:1,自引:0,他引:1  
Landsat 7s recent malfunctioning will result in significant gaps in long-term satellite monitoring of Earth, affecting not only the research of the Earth science community but also conservation users of these data. To determine whether or how important Landsat monitoring is for conservation and natural resource management, we reviewed the Landsat programs history with special emphasis on the development of user groups. We also conducted a bibliographic search to determine the extent to which conservation research has been based on Landsat data. Conservation biologists were not an early user group of Landsat data because a) biologists lacked technical capacity – computers and software – to analyze these data; b) Landsats 1980s commercialization rendered images too costly for biologists budgets; and c) the broad-scale disciplines of conservation biology and landscape ecology did not develop until the mid-to-late 1980s. All these conditions had changed by the 1990s and Landsat imagery became an important tool for conservation biology. Satellite monitoring and Landsat continuity are mandated by the Land Remote Sensing Act of 1992. This legislation leaves open commercial options. However, past experiments with commercial operations were neither viable nor economical, and severely reduced the quality of monitoring, archiving and data access for academia and the public. Future satellite monitoring programs are essential for conservation and natural resource management, must provide continuity with Landsat, and should be government operated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号