首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1624篇
  免费   110篇
  国内免费   157篇
安全科学   24篇
废物处理   4篇
环保管理   270篇
综合类   433篇
基础理论   535篇
污染及防治   28篇
评价与监测   39篇
社会与环境   523篇
灾害及防治   35篇
  2024年   4篇
  2023年   27篇
  2022年   32篇
  2021年   51篇
  2020年   41篇
  2019年   44篇
  2018年   38篇
  2017年   73篇
  2016年   80篇
  2015年   67篇
  2014年   63篇
  2013年   120篇
  2012年   81篇
  2011年   103篇
  2010年   102篇
  2009年   72篇
  2008年   89篇
  2007年   113篇
  2006年   99篇
  2005年   97篇
  2004年   79篇
  2003年   56篇
  2002年   70篇
  2001年   48篇
  2000年   51篇
  1999年   34篇
  1998年   19篇
  1997年   12篇
  1996年   18篇
  1995年   21篇
  1994年   8篇
  1993年   21篇
  1992年   5篇
  1991年   13篇
  1990年   4篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   3篇
排序方式: 共有1891条查询结果,搜索用时 15 毫秒
931.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   
932.
Renewable energy sources, such as wind energy, are essential tools for reducing the causes of climate change, but wind turbines can pose a collision risk for bats. To date, the population-level effects of wind-related mortality have been estimated for only 1 bat species. To estimate temporal trends in bat abundance, we considered wind turbines as opportunistic sampling tools for flying bats (analogous to fishing nets), where catch per unit effort (carcass abundance per monitored turbine) is a proxy for aerial abundance of bats, after accounting for seasonal variation in activity. We used a large, standardized data set of records of bat carcasses from 594 turbines in southern Ontario, Canada, and corrected these data to account for surveyor efficiency and scavenger removal. We used Bayesian hierarchical models to estimate temporal trends in aerial abundance of bats and to explore the effect of spatial factors, including landscape features associated with bat habitat (e.g., wetlands, croplands, and forested lands), on the number of mortalities for each species. The models showed a rapid decline in the abundance of 4 species in our study area; declines in capture of carcasses over 7 years ranged from 65% (big brown bat [Eptesicus fuscus]) to 91% (silver-haired bat [Lasionycteris noctivagans]). Estimated declines were independent of the effects of mitigation (increasing wind speed at which turbines begin to generate electricity from 3.5 to 5.5 m/s), which significantly reduced but did not eliminate bat mortality. Late-summer mortality of hoary (Lasiurus cinereus), eastern red (Lasiurus borealis), and silver-haired bats was predicted by woodlot cover, and mortality of big brown bats decreased with increasing elevation. These landscape predictors of bat mortality can inform the siting of future wind energy operations. Our most important result is the apparent decline in abundance of four common species of bat in the airspace, which requires further investigation.  相似文献   
933.
We developed a method to estimate population abundance from simultaneous counts of unmarked individuals over multiple sites. We considered that at each sampling occasion, individuals in a population could be detected at 1 of the survey sites or remain undetected and used either multinomial or binomial simultaneous-count models to estimate abundance, the latter being equivalent to an N-mixture model with one site. We tested model performance with simulations over a range of detection probabilities, population sizes, growth rates, number of years, sampling occasions, and sites. We then applied our method to 3 critically endangered vulture species in Cambodia to demonstrate the real-world applicability of the model and to provide the first abundance estimates for these species in Cambodia. Our new approach works best when existing methods are expected to perform poorly (i.e., few sites and large variation in abundance among sites) and if individuals may move among sites between sampling occasions. The approach performed better when there were >8 sampling occasions and net probability of detection was high (>0.5). We believe our approach will be useful in particular for simultaneous surveys at aggregation sites, such as roosts. The method complements existing approaches for estimating abundance of unmarked individuals and is the first method designed specifically for simultaneous counts.  相似文献   
934.
Detecting population declines is a critical task for conservation biology. Logistical difficulties and the spatiotemporal variability of populations make estimation of population declines difficult. For statistical reasons, estimates of population decline may be biased when study sites are chosen based on abundance of the focal species. In this situation, apparent population declines are likely to be detected even if there is no decline. This site-selection bias is mentioned in the literature but is not well known. We used simulations and real population data to examine the effects of site-selection biases on inferences about population trends. We used a left-censoring method to detect population-size patterns consistent with site-selection bias. The site-selection bias is an important consideration for conservation biologists, and we offer suggestions for minimizing or mitigating it in study design and analysis. Article impact statement: Estimates of population declines are biased if studies begin in large populations, and time-series data show a signature of such an effect.  相似文献   
935.
目前节能减排已经成为中国“十二五”规划面临的主要任务之一,相关部门在进行决策时不能不考虑城市发展水平与CO2排放的关系.通过协整理论及修正误差模型分析结果表明,由于中国经历着经济转轨和社会转型,虽然1949-2007年城市化与CO2排放并不存在长期均衡关系,但改革开放前后城市化和CO2排放量都呈现出长期稳定的比例关系,即CO2排放随着城市化水平的提高而不断提高,且改革开放前后城市化水平对CO2排放影响存在差异.另外,尽管从短期来看,CO2排放不受当年城市化变动的影响,但从长期来看,不论改革开放前还是改革开放以后,城市化与CO2排放之间具有长期的稳定关系.城市化对CO2排放的影响存在一定的滞后性.因此,相关政府部门在进行决算时不能脱离城市化发展阶段,即要考虑短期影响,更要在战略高度进行长期规划,可通过把握城市化的进程来控制CO2排放增长的速度.  相似文献   
936.
Assessing the effects of diseases on wildlife populations can be difficult in the absence of observed mortalities, but it is crucial for threat assessment and conservation. We performed an intensive capture‐mark‐recapture study across seasons and years to investigate the effect of chytridiomycosis on demographics in 2 populations of the threatened common mist frog (Litoria rheocola) in the lowland wet tropics of Queensland, Australia. Infection prevalence was the best predictor for apparent survival probability in adult males and varied widely with season (0–65%). Infection prevalence was highest in winter months when monthly survival probabilities were low (approximately 70%). Populations at both sites exhibited very low annual survival probabilities (12–15%) but high recruitment (71–91%), which resulted in population growth rates that fluctuated seasonally. Our results suggest that even in the absence of observed mortalities and continued declines, and despite host–pathogen co‐existence for multiple host generations over almost 2 decades, chytridiomycosis continues to have substantial seasonally fluctuating population‐level effects on amphibian survival, which necessitates increased recruitment for population persistence. Similarly infected populations may thus be under continued threat from chytridiomycosis which may render them vulnerable to other threatening processes, particularly those affecting recruitment success. Quitridiomicosis y Mortalidad Estacional de Ranas Asociadas a Arroyos Tropicales Quince Años Después de la Introducción de Batrachochytrium dendrobatidisvsp  相似文献   
937.
The importance of accounting for economic costs when making environmental‐management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population‐management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost‐efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on understanding the distributional characteristics of such uncertainty. Our approach provides a tool to improve decision making.  相似文献   
938.
随着城市化和工业化进程不断加快,我国的人口流动越来越频繁。流动人口特别是流入人口持续、大规模增长对城市资源的影响方式和影响程度,是中国未来社会发展和城市化过程中急需深入研究的重要问题之一。本文以城市综合竞争力居浙江省县级市首位的义乌市为例,利用遥感技术提取了该市2007年的土地利用信息,在GIS空间统计分析功能支持下,综合分析了义乌市社会经济发展、流入人口变化特征,重点讨论了净流入人口持续增长对区域土地资源利用格局的影响。结果表明:随着社会经济的快速发展,2001-2007年,义乌市总人口增加了近68万人,其中流入人口增加了63万人;建设用地从51.33km2增加到140.36km2;耕地面积减少了126.55km2.  相似文献   
939.
Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre‐adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species’ range there may be long‐standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.  相似文献   
940.
Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号