首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   12篇
  国内免费   20篇
安全科学   40篇
废物处理   18篇
环保管理   24篇
综合类   42篇
基础理论   28篇
污染及防治   16篇
评价与监测   1篇
社会与环境   8篇
灾害及防治   1篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   10篇
  2015年   8篇
  2014年   8篇
  2013年   24篇
  2012年   5篇
  2011年   3篇
  2010年   8篇
  2009年   13篇
  2008年   8篇
  2007年   19篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
41.
Anthropogenic acid deposition causes forest soil acidification and perturbation of the soil forming processes. The impact of soil acidification on tree growth is discussed in view of the role of mycorrhizal fungi in weathering and nutrient uptake. A review has been carried out of experiments involving treatments of forest soil by lime and wood ash, where soil properties and soil solution composition have been investigated. Results from these experiments in Europe and North America are summarized. In general, the content of C in the mor layer decreased as a result of treatment due to higher microbial activity and soil respiration as well as increased leakage of DOC. In addition, the content of N in the mor layer, in general, decreased after treatment and there are occasional peaks of high NO3concentrations in soil solution. In nearly all reviewed investigations the pH of the deep mineral soil solution decreased and Al, SO4and NO3concentrations increased after treatment. These effects are probably due to the high ionic strength and increased microbial activity as a consequence of the treatments. In the soil, pH, CEC and base saturation increased in the upper horizons, but decreases in the upper mineral soil are also reported. In general, there was no increase in tree growth as a result of these treatments. The positive effects of the treatments on soil processes and tree growth are therefore questionable. In view of these conclusions, an investigation was carried out on the soil and soil solution chemistry and the role of mycorrhizal fungi in a spruce stand treated with two doses of lime and another treated with lime/ash in southern Sweden. The results of this investigation is reported in this volume.  相似文献   
42.
The aim of this study was to assess the effects of forest management on carbon sequestration in forests and wood products by using a gap-type forest model interfaced with a wood product model. The assessment is based on total carbon sequestration, i.e. the amount of carbon left in vegetation, litter, soil organic matter and products when the flows of carbon back to the atmosphere have been subtracted. Thirty mixed-species stands, representing medium fertility sites in southern Finland, were included in each simulation for 300 years under current climatic conditions and predicted conditions of changing climate. The average total balance for the first 100 years was higher in the unmanaged system than in the managed system, but for the second and third 100-year periods the results were clearly opposite. Differences in the total balance between the treatments were larger during the first 100 years than over the whole 300-year period. Under conditions of changing climate, differences in carbon sequestration between management options were more pronounced than under current climatic conditions. Under current climatic conditions with the 100-year time frame, the ratio between the total annual balance and annual gross production was 0·208–0·289. Over the whole 300 years, however, efficiency was much lower, 0·088–0·121. Under changing climatic conditions, efficiency was also lower, 0·182–0·252 and 0·081–0·096, respectively. Different management alternatives clearly produced different amounts of timber for the production process; under conditions of changing climate, timber production was substantially enhanced. However, total carbon storages at the end of the simulation varied less than timber production. In the managed system, the flow back into the atmosphere was largest from litter, 41–51% of the total outflow, the flow from vegetation was 23–28%, from soil organic matter 22–25%, emissions from products 1–7%, and emissions from landfills 0–3%. If emissions due to the use of machinery in timber harvesting and transportation were included, they made up only 0·03–0·33% of the total outflow.  相似文献   
43.
生物—物理化学法处理制浆黑液的试验研究   总被引:4,自引:0,他引:4  
采用酸中和—厌氧—好氧—生物活性炭或化学混凝综合法处理制浆黑液,探讨了酸中和处理的影响因素及厌氧处理对后段好氧处理的影响.结果表明:两种综合处理工艺对黑液中木质素及COD_(Cr)的去除有显著效果;厌氧处理比好氧处理对木质素的降解更为有利.  相似文献   
44.
藤茶绿枝扦插技术初探   总被引:4,自引:0,他引:4  
使用NAA、IAA、IBA、ABT ,浓度分别为 10 0× 10 -6、2 0 0× 10 -6、30 0× 10 -6、5 0 0× 10 -6,基质分别为细炉灰渣、洁净河沙、湿锯末进行藤茶深枝扦插试验 ,试验结果表明 :半木质化枝条经 30 0 - 5 0 0× 10 -6NAA处理 3-5s ,基质用湿锯末 ,在 2 0 - 2 5℃温度下 ,相对湿度 90 %的大棚喷雾环境中 ,成苗率高、质量好  相似文献   
45.
为研究桉树遗态Fe/C复合材料(PBGC-Fe/C)对水中Cr(Ⅵ)的净化能力及其动态吸附过程,以PBGC-Fe/C吸附剂为固定床,选择溶液初始pH、进水流速、溶液初始浓度、吸附剂投加量和环境温度为影响因素开展动态吸附试验分析.结果表明:在溶液初始pH为2,进水流速为5.14 mL/min,吸附剂投加量为2 g和环境温度为35℃的条件下,PBGC-Fe/C对水中Cr(Ⅵ)的最佳平衡吸附容量达到10.72 mg/g;提高溶液初始pH、进水流速和溶液初始质量浓度或降低吸附剂投加量均可缩短反应穿透时间和衰竭时间;Thomas和Yoon-Nelson模型均能较好地描述PBGC-Fe/C对水中Cr(Ⅵ)的动态吸附过程,说明该吸附过程中内部扩散和外部扩散均为非限速步骤,吸附速率常数(kTh)随着进水流速的增大从1.3×10-3 mL/(min·mg)升至2.6×10-3 mL/(min·mg),随着溶液初始质量浓度的增大从2.7×10-3 mL/(min·mg)降至1.4×10-3 mL/(min·mg).研究显示,PBGC-Fe/C对水中Cr(Ⅵ)具有较好的动态吸附能力,具有较好的市场应用前景.   相似文献   
46.
为探明砖木结构古建筑火场下的特征,定量分析不同火灾场景下,建筑内部温度、烟气浓度等参数的变化。选取中国北方典型的砖木结构体系的四合院韩城党家村贾祖祠为研究对象,采用PyroSim建模分析,研究不同火灾场景下不同时间点的温度、CO浓度、能见度等变化。研究结果表明:贾祖祠主厢房较封闭,火灾中火源周围温度峰值可达750 ℃,CO质量浓度达到0.003 kg/m3,能见度几乎为0 m,风速最高为10 m/s且极不稳定;四合院中主厢房空间布局高,火灾中这些参数的影响会导致严重的轰燃现象发生,故此处发生火灾更易产生严重危害。对不同场景的砖木结构古建筑重要火灾因素发展规律的研究,能为古建筑的性能化防火提供科学参考依据。  相似文献   
47.
Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species’ hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on “richness hotspots” may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.  相似文献   
48.
为了探讨醇酸清漆对典型装饰木材火灾危险性的影响,利用热重分析、差热分析、木垛法、隧道法和塑料烟密度仪对装饰木材的燃烧性能、热解特性和生烟特性进行了分析。结果表明,木材及其表面涂覆的醇酸清漆主要热失重发生在200~500℃,其中木材的热解过程为先吸热、后放热的过程,而醇酸清漆为吸热过程。与未涂覆清漆的木材相比,清漆使木材在燃烧过程中质量损失、有焰燃烧时间及火焰传播比值明显增加。同时,醇酸清漆的烯烃结构和苯环结构还导致木材的比光密度、质量光密度增大,烟气危害增大,从而进一步增大了火灾危险性。此外,装饰木材的生烟特性还受火焰条件和辐射功率的影响,高辐射功率和有焰条件下材料的比光密度和质量光密度均较低。  相似文献   
49.
Evaluation of Oriental beech (Fagus orientalis L.) was investigated with aspect of thermo-chemical conversion to obtain bio-char, bio-oil and gaseous. When the pyrolysis temperature increased, the bio-char yield decreased. A high temperature and smaller particles increase the heating rate resulting in a decreased bio-char yield. The bio-char obtained are carbon rich, with high heating value and relatively pollution-free potential solid biofuel. The liquefaction yield sharply increased with increasing the temperature near critical temperature and after that. In the pyrolysis, increases of liquid yields are considerably sharply for all of the samples with increasing of pyrolysis temperature from 690 K to 720 K. The beechnut oil was converted to biodiesel in supercritical methanol without using the catalyst. Experiments have been carried out in an autoclave at 493, 523 and 593 K, and with molar ratios of 1:6–1:40 of the oil to methanol. The yield of alkyl ester increased with increasing the molar ratio of oil to alcohol.  相似文献   
50.
A system to turn a potentially harmful stream of solid waste into a set of substreams with either commercial value or highly concentrated residual streams is presented. The waste which is considered is metal impregnated (in particular Chromated Copper Arsenate (CCA) treated) wood waste and timber, such as telephone poles, railway sleepers, timber from landscape and cooling towers, wooden silos, hop-poles, cable drums and wooden playground equipment. These waste streams sum up to several 100,000 tons of material per year currently to be dumped in every major country of the European Community (EC). Technologies need to be developed to reduce this CCA treated wood waste, such that all of the metals are contained in a marketable product stream, and the pyrolysis gases and/or pyrolysis liquid are used to their maximum potential with respect to energy recuperation. Pyrolysing the CCA treated wood waste may be a good solution to the growing disposal problem since low temperatures and no oxidising agents are used, which result in lower loss of metals compared to combustion. An experimental labscale pyrolysis system has been developed to study the influence of the pyrolysis temperature and the duration of the pyrolysis process on the release of metals and the mass reduction. The macrodistribution and microdistribution of the metals in the solid pyrolysis residue is studied using Inductively Coupled Plasma Mass Spectrometry (ICP–MS) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Analysis (SEM–EDXA). Furthermore, a complete mass balance is calculated over the pyrolysis system. Based on these results a semi-industrial pyrolysis system (pilot plant scale) has been developed consisting of three stages: grinding, packed bed pyrolysis and metal separation. Special types of equipment have been developed to carry out the three stages. A new grinding system has been developed, based on a crushing mechanism rather than a cutting mechanism. The crushed wood is introduced by means of a screw feeding system into a reaction column. In this pyrolysis reactor the wood is heated by subjecting it to a flow of hot gases. This causes an adiabatic pyrolysis, which results in volatilisation of the volatile compounds whereas the mineral compounds (containing the metals) remain entrapped in a coal-type residue which is very rich in carbon. The condensable compounds in the pyrolysis gas condense while leaving the reaction zone due to the inverse temperature gradient. The pyrolysis gas leaving the reactor is used as fuel for the hot gas generator. The charcoal which is extracted at the bottom of the reactor, is cooled, compressed, removed and stored, ready to feed the subsequent stage. A specially developed grinder is used to remove the metal particles from the charcoal and the separation between metal and charcoal particles is accomplished in a pneumatic centrifuge as a result of the difference in density. Using this system the ultimate waste is less than 3% of the initial wood mass. Results obtained with a semi-industrial scale prototype confirm the effectiveness of the process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号