首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   83篇
  国内免费   233篇
安全科学   92篇
废物处理   3篇
环保管理   48篇
综合类   565篇
基础理论   110篇
污染及防治   23篇
评价与监测   53篇
社会与环境   19篇
灾害及防治   112篇
  2024年   27篇
  2023年   53篇
  2022年   80篇
  2021年   89篇
  2020年   68篇
  2019年   52篇
  2018年   27篇
  2017年   35篇
  2016年   41篇
  2015年   35篇
  2014年   88篇
  2013年   47篇
  2012年   45篇
  2011年   60篇
  2010年   49篇
  2009年   34篇
  2008年   39篇
  2007年   33篇
  2006年   18篇
  2005年   21篇
  2004年   20篇
  2003年   6篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1989年   6篇
排序方式: 共有1025条查询结果,搜索用时 0 毫秒
201.
为系统研究石家庄市季节性典型污染物的重污染传输特征,基于2018年12月~2019年11月46个环境监测站(PM2.5、PM10、O3、NO2、SO2和CO)及17个气象站(温度、湿度和风速)的小时监测数据,利用插值(IDW)和相关方法,分析污染物的季节性时空特征;并结合GDAS数据,采用后向轨迹方法,研究污染物的季度传输格局和潜在源区.结果表明:①不同季节具有典型的污染物,季节性典型污染物和污染率依次为:春季(PM10,48.91%)、夏季(O3,81.97%)、秋季(PM10和PM2.5,47.54%和32.79%)和冬季(PM2.5,74.44%),其与气象条件变化有显著联系;②春季PM10与风速呈负相关,呈西北高、东南低的空间格局,主要传输方向为南向(53.32%),潜在源区(WPCWTij≥160 μg ·m-3)为河北(冀)中南、河南(豫)中北及山西(晋)中部,且山东(鲁)西和陕西(陕)西北部的传输也会贡献(WPSCFij≥0.3)市域的PM10浓度;③夏季O3与温度呈正相关,与湿度呈负相关,传输通道方向为东南-南向(54.24%),其潜在源区呈以石家庄市为中心,沧州和菏泽为两翼的新月形区域;④秋季和冬季PM2.5与湿度呈正相关,冬季呈西低、东高态势分布,输送方向为:秋季(东北-东南,74.75%),冬季(西北,55.47%),主要污染源区(WPCWTij≥180 μg ·m-3)集中在冀中南、豫北和晋中西部.  相似文献   
202.
利用HYSPLIT模式计算了2016—2018年西宁市逐日72 h气团后向轨迹,采用聚类分析方法,结合同期颗粒物PM10和PM2.5质量浓度数据,分析逐年和3年平均西宁市颗粒物输送特征及差异,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)对影响西宁市PM10和PM2.5质量浓度的污染潜在源区及不同潜在源区贡献进行了分析.结果表明,2016—2018年,西宁市颗粒物最主要输送路径源自青海北部的聚类2、甘肃中部的聚类6和甘肃东部的聚类8,占同期总轨迹比例分别为28.1%、27.4%和27.5%;3年平均则源自青海北经青海东折回西宁的聚类2,占比45.3%.最主要输送路径对应颗粒物质量浓度最低,输送距离较短、垂直高度较低、气团移速较慢;影响气团由西北向偏东转变,3年平均则以西北气团为主.2018年源自甘肃经青海东至西宁的短距离输送处于突出地位,所含轨迹占总轨迹的比例高达49.6%.PM10和PM2.5主要输送路径和污染路径由较长距离向较短距离过渡,较长距离输送路径出现比例逐年较小.PM2.5/PM10小于0.3时,主要输送路径与PM10污染轨迹有很好的对应关系;PM2.5/PM10大于0.6时,主要输送路径与PM2.5污染轨迹有较好的对应关系.PSCF和CWT分析发现,影响西宁市颗粒物质量浓度的主要污染潜在源区分布在新疆南部和青海北部,对PM10质量浓度贡献大于100 μg·m-3,对PM2.5质量浓度贡献大于45 μg·m-3.潜在源区分布年变化差异明显,2016年最广,2018年最小.印度北部主要贡献源区虽分布范围逐年减小,但在2017年局部贡献增大,对PM10贡献超250 μg·m-3,对PM2.5贡献超60 μg·m-3.主要贡献区周边区域及西宁至兰州一带为中等贡献源区,对PM10贡献为50~100 μg·m-3,对PM2.5贡献为15~45 μg·m-3.  相似文献   
203.
柴窝堡湖表层底泥重金属污染评价   总被引:1,自引:0,他引:1  
研究了乌鲁木齐市柴窝堡湖表层底泥的重金属含量,并采用Hakanson潜在生态危害指数法对底泥中的重金属潜在生态风险进行评价。结果表明:底泥中Cu、Zn、Pb、Cd含量均超出乌鲁木齐市土壤背景值。除湖心区外,Cd在5个监测区域中的潜在生态危害均为中等;其它重金属在5个采样点的潜在生态危害均为轻微。各重金属间的相关性分析表明,Zn与Cu,Pb与Cd、Cu呈显著正相关,说明这4种元素污染源可能相同。柴窝堡湖表层底泥受到Cu、Zn、Pb、Cd污染,需采取相应措施防止重金属由底泥进入水相。  相似文献   
204.
烟台市环境受体PM2.5四季污染特征与来源解析   总被引:2,自引:0,他引:2  
于2016~2017年四季在烟台市3个点位采集了PM_(2.5)样品,分析了其质量浓度和化学组分特征.利用CMB模型对受体进行解析,并利用后向轨迹和PSCF对传输气流和潜在源区进行了分析.结果表明,烟台市监测点位冬季、春季、夏季和秋季的PM_(2.5)平均质量浓度分别为(89. 45±56. 80)、(76. 78±28. 44)、(32. 65±17. 92)和(57. 32±24. 60)μg·m~(-3). PM_(2.5)浓度表现出明显的季节变化特征(P 0. 01).全年PM_(2.5)各源类分担率大小依次为:二次硝酸盐源(20. 3%)城市扬尘源(15. 7%)机动车排放源(14. 9%)燃煤源(13. 8%)二次硫酸盐源(12. 8%) SOC(6. 1%)建筑水泥尘源(5. 5%)海盐源(2. 9%),可以看到烟台市以二次源、扬尘、机动车排放源和燃煤源为主要污染源.春季硝酸盐源和城市扬尘源是重要贡献源类,夏季硫酸盐源贡献突出,燃煤源在秋冬季占比突出.烟台市气流输送和潜在源区也呈现出明显的季节变化:冬季主要受烟台市短距离输送的影响;夏季主要受烟台东部沿海和本地的影响;春秋季主要受山东东北部和东部沿海地区的区域传输和烟台市本地源的影响.  相似文献   
205.
利用智利地震震源分布确定智利地区主震断层面   总被引:1,自引:0,他引:1  
从历史地震来看,智利及其周边地区的历史强震主要集中在Nazca板块和南美洲板块之间的俯冲带上,该区也是7级以上大震频发的地区,所以对于该地区的断层结构和震源机制的研究就显得十分有必要.大地震发生后,大量余震在断层面上发生.因此余震震源位置的空间分布可以较为精确地勾画出断层面的位置.假定地震的发震断层可以用一个平面来模拟...  相似文献   
206.
王小兰  王雁  闫世明  岳江  郭伟  郝振荣 《环境科学》2022,43(7):3423-3438
对2017~2019年晋中盆地主要城市PM10和PM2.5逐时浓度资料进行了分析,给出了晋中市和太原市颗粒物浓度主要分布特征;此外利用PM2.5逐时浓度资料,结合HYSPLIT后向轨迹模型,通过轨迹密度分析(TDA)、轨迹停留时间分析(RTA)和潜在源贡献因子分析(PSCF),并对PM2.5逐时浓度资料和对应时刻风向数据进行分析,探讨了晋中盆地主要城市冬季PM2.5传输特征.结果表明,太原市颗粒物浓度整体水平高于晋中市,月、季变化特征类似,均呈现冬季高,夏季低的特征,最高值出现在1月.晋中市受静稳型天气形势引起的颗粒物污染较受沙尘型天气形势导致的颗粒物污染相较太原市更普遍一些;颗粒物的分布呈现出晋中市中间值较多,太原市高值偏多、低值偏少的特点,冬季为晋中盆地PM2.5污染高发季节.晋中盆地主要城市冬季PM2.5传输通道均可分为4类:第一类通道沿太行山横谷传输,第二类通道为偏东南方向传输通道,第一、二类均为近距离传输通道,气团会携带较多...  相似文献   
207.
沈城  王文娟  沙晨燕  谢雨晴  王敏  吴健 《环境科学》2024,45(3):1769-1780
为深入探究典型行业再利用土壤重金属污染特征及生态风险状况,基于上海市嘉定区49个地块315个不同深度剖面土壤样品数据,采用地累积指数和潜在生态风险指数评估Cd、Pb、Cu、Zn、Ni、Hg和As这7种重金属含量特征和潜在生态风险程度,并利用源解析受体模型(APCS-MLR)和正定矩阵因子分解模型(PMF)解析其污染来源.结果表明:①研究区土壤中除As外,其余重金属均不同程度超过上海市土壤背景值,表层土壤中Cd、Pb、Cu、Zn、Ni和Hg含量分别是背景值的3.54、2.34、2.91、1.20、3.75和4.40倍;7种重金属含量随着土壤垂直剖面深度的增加逐渐降低,重金属在表层土壤中存在一定程度的富集,人类活动影响了重金属在土壤中的分布规律.②研究区内APCS-MLR和PMF两种受体模型均识别出土壤重金属4种主要来源,源1(Cu、Zn和Pb)为金属制品和汽车制造混合源,源2(Ni和Cd)为电镀企业来源,源3(Hg)主要为化工企业来源,源4(As)为自然源,两种受体模型结合运用,进一步提高源解析的精准度和可信度.③地累积指数由大到小表现为:Hg(1.54)>Ni(1.32)>Cd(1.21)>Cu(0.96)>Pb(0.64)>Zn(-0.33)>As(-1.02);潜在生态风险指数结果显示,研究区综合潜在生态风险指数RI值在32.50~4 910.97,均值为321.40,整体呈现较强潜在生态风险,再开发利用工业场地土壤中重金属Hg、Ni和Cd的污染值得进一步关注.  相似文献   
208.
耕地土壤的重金属有可能通过食物链网迁移转化危害生态环境和人体健康.目前,人们对兰州市耕地土壤重金属的生态环境和人体健康风险还不够清楚,从而影响对其有效管控.因此,以兰州市耕地表层土壤为研究对象,采用潜在生态风险危害指数评价As、Cd、Cr、Hg和Pb共5种重金属的生态环境风险,以USEPA提出的健康风险模型和推荐的标准评估其人体健康风险,用地理探测器探究风险空间分异的主要影响因子,以便为研究区重金属污染风险的精准管控提供科学依据.结果表明,研究区耕地表层土壤重金属对生态环境风险主要为中风险(65.25%),少部分为低风险(13.80%)和高风险(20.95%),低风险区主要位于永登县东南部、榆中县中部和北部以及皋兰县西南部;中等风险区在三县五区均有分布;高风险区位于永登县北和东南部、城关区南部、七里河东北部、西固区东部和榆中县中部.5种重金属不同暴露途径的非致癌与致癌风险均为:经口摄入>皮肤接触>呼吸摄入,总体上儿童高于成人.但是,"五毒"重金属的非致癌风险HI均小于1,表明它们对当地居民不存在不可接受的非致癌风险.As的致癌风险分别大于1×10-5(儿童2.04×10-5)和小于1×10-4(成人1.91×10-5),说明其对当地居民存在可接受的中等致癌风险,且儿童的大于成人.地理探测器分析表明,采样季平均降水量对As和Cd人体健康风险空间分异的影响最大,GDP对Cr风险空间分异的影响最大,距铁路距离对Hg和Pb风险空间分异的影响最大;交互作用探测表明,各因子之间均为双因子增强,除主导因子起作用外,pH值、坡度和海拔高度等其它因子也会增强主导因子对耕地土壤重金属风险空间分异的影响程度.  相似文献   
209.
为全面了解蓄水运用期三峡库区表层沉积物中重金属含量及其潜在生态危害程度,在三峡库区干流及支流共采集了24个沉积物样品,测定了Cu、Pb、Zn、Cd、Ni、Cr、As和Hg的含量,并采用地积累指数法和潜在生态风险指数法对沉积物中的重金属污染进行了评价.结果表明,三峡库区重金属元素Cu、Pb、Zn、Cd、Ni、Cr、As和Hg的平均含量分别为:76.03、59.40、137.63、0.75、46.81、86.31、18.07和0.109 mg.kg-1,均高于长江沉积物背景值.地积累指数法评价结果显示:重金属元素污染程度顺序为:Cd>Pb>Cu>As>Zn>Ni>Hg>Cr.潜在生态风险指数法评价结果表明,各重金属污染对三峡库区构成的潜在生态危害由强至弱依次为:Cd>Hg>Cu>As>Pb>Cr>Zn,其中Cd的贡献因子最大.总体上讲,三峡库区蓄水运用期处于轻微生态危害等级,并未受到明显的重金属污染.  相似文献   
210.
柴育红  王明新  赵兴青 《环境化学》2019,38(6):1375-1384
以常州的一个重工业区为例,2018年4月采集了工业区内居住区、学校、公园、超市等4个区域的户外灰尘样品共31份,并对其重金属Cd、Cr、Cu、Mn、Ni和Pb的含量进行测定,以探究灰尘重金属污染的潜在生态和健康风险.结果表明,灰尘中Cu、Zn、Pb、Ni、Cd和Cr含量均值分别为203.49、1184.52、442.21、124.51、4.82、289.24 mg·kg~(-1),均大于江苏省土壤背景值, Ni、Cr含量略高于土壤背景值,Cu、Zn、Pb含量为背景值的8.7—20.1倍,Cd含量为背景值的56.7倍.灰尘中Cd的富集程度为强烈,富集系数为25.47, Pb和Zn为显著富集, Cu为中度富集,其影响可能来自于自然源、交通源和区域工业源,Ni和Cr富集系数较小,影响可能主要是自然源.潜在生态风险评价结果表明,Cd的潜在生态风险极强,对生态风险起主导作用,其它重金属潜在生态风险为轻微.健康风险评价结果表明,Cr和Pb对儿童的非致癌健康风险值超过1,其它重金属对成人与儿童非致癌风险和致癌风险均低于安全阈值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号