首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   10篇
  国内免费   6篇
安全科学   5篇
环保管理   4篇
综合类   41篇
基础理论   1篇
评价与监测   3篇
灾害及防治   15篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
41.
城市街道峡谷结构对近地面边界层的风场环流等气象要素具有重要影响,可导致城市局地空气污染分布发生变化.随着城市化发展及城市空气质量变化,街道峡谷的城市空气污染影响日益突出,分析街道峡谷内部风场成为认识和治理我国城市空气污染的一条重要途径.鉴于目前我国鲜有城市街道尺度大气边界层精细气象观测研究,本文分析了美国俄克拉荷马大学的街道峡谷精细气象观测数据及其FLUENT模拟.结果表明:街道峡谷内风场结构变化依赖大气背景风向,当背景风向平行于街道峡谷走向时,街谷两岸风速几乎没有差异,而在背景风向垂直于街道峡谷走向时,由于高空风进入街谷形成的涡旋气流对街道峡谷风场有补充作用,峡谷两侧中层高度风场差异变大,风速差值大约为0.5 m·s~(-1),且街道峡谷两岸风速差异得到了FLUENT模式的验证,但模式对迎风岸的风速模拟存在高估,模拟的中层高度处两岸风速差值为1.6 m·s~(-1).观测资料分析揭示大气边界层稳定度条件对街道峡谷内风场分布也有很大影响,中性稳定条件下街道峡谷两岸近地层风速差异最大,输送进入峡谷空间的风速增量比原峡谷内风速大约高1倍,其它稳定度条件下街谷两岸风速差异被削弱.  相似文献   
42.
太湖梅梁湾理化指标分层的空间分布特征   总被引:3,自引:1,他引:3  
为了解大型浅水湖泊水体理化指标的空间分异特征,在太湖梅梁湾布设62个采样点,垂向分为3层,调查水体中Chla、TN、TDN(溶解性总氮)、TP、TDP(溶解性总磷)的质量浓度及SD(透明度)、DOS(溶解氧饱和度)等水体理化指标,统计分析了夏季太湖水体理化指标空间分布特征及影响因素. 结果表明:①梅梁湾水体理化指标垂向时空变幅不同,垂向相对变幅平均值ρ(TN)为68.0%,ρ(TDN)为40.1%,ρ(TP)为138.0%,ρ(TDP)为35.7%,ρ(Chla)为66.0%,DOS为79.0%,营养盐总量的垂向差异比溶解态大;②平面上,水华堆积区ρ(TN)、ρ(TDN)、ρ(TP)、ρ(TDP)、ρ(Chla)、DOS平均值分别为梅梁湾平均值的4.45、2.45、6.45、4.74、2.08、1.02倍,比垂向差异大;③风场驱动下蓝藻堆积对水体各理化指标空间分布的影响巨大;④ρ(Chla)垂向分层明显,ρ(Chla)的垂向变幅表层0.2m处显著高于下层,可达89.7μg/L. 浅水湖泊的水体理化指标时空变异大,受气象条件、水动力条件等因素的影响,故在监测点位布设及数据分析时,应考虑垂直分层采样、滨岸带采样并详细记录采样条件.   相似文献   
43.
四川长寿地区风场特征研究   总被引:1,自引:0,他引:1  
本文根据大量试验资料,分析研究了长寿地区的地面风场基本特征和风的低空垂直结构,为工程项目的选址和制定大气污染防治措施设计,提供了重要的参考资料.  相似文献   
44.
兰州市西固地区冬季地面风场、温度场和湿度场特征分析   总被引:1,自引:0,他引:1  
利用2005-01-20~03-07日西固地区最新的地面气象要素资料,分析了西固地区地面风场、湿度场和温度场特征以及这三个要素场之间的关系。结果表明:西固地区冬季主导风向为东风或偏东风,平均风速较小.温度变化呈正(余)弦变化。相对湿度变化与温度场呈相反的不太平滑的正(余)弦变化.风速变化与温度变化有很强的一致性。相对湿度变化与温度变化呈反比关系.  相似文献   
45.
利用2013~2015年廊坊市空气污染资料、MICAPS气象资料、廊坊气象观测站自动站资料,应用数理统计、天气学等方法对廊坊市86次空气重污染前后的低层风场进行了对比分析。结果表明:(1)廊坊市“突发”空气重污染时,因污染程度变化的差异可分为5个等级,其中3级转6级AQI值变化最大,平均变化值达227,4级转5级偏南风至偏西风均为75;(2)“突发”空气重污染过程中,地面风向风速均有明显变化,偏北风控制时间长比例下降,静风、偏南风(SW/SSW/WSW/W)、偏东风(E/ENE/ESE/SE)时间长比例增加;除4级转5级外,地面平均风速均有不同程度下降,以2级转5级下降幅度最大,平均达0.6m/s·d;(3)空气重污染前,1000hPa、925hPa以及850hPa高空以西北风或偏西风为主,空气重污染时,各层风向转为以西南、东南或偏东风控制为主,且常见风的辐合场形成。在三层大气风场风向变化不一致的条件下,以1000hPa风场风向的变化为参考点;(4)在“突发”空气重污染过程中,850hPa、925hPa、1000hPa有北风风速减小、南风风速增加的变化特征,且空气质量的等级变化越大、污染程度越重,大气风场的垂直变化越深厚。  相似文献   
46.
以平地型铅锌尾矿库尾砂颗粒为研究对象,基于离散型随机轨道模型,数值模拟不同粒径尾砂颗粒在不同风速下的迁移路径和沉积距离。研究结果表明,风速对尾矿颗粒的运动轨迹有着明显的影响。当风速为0.5m/s时,50μm尾砂迁移距离较短,无法到达计算域口;而当风速增大为2.0m/s和3.5m/s时,尾砂颗粒迁移至计算域出口的时间随之缩短,分别为2 100s和1 230s。尾砂粒径对尾砂的污染距离也有明显的影响。当风速为3.5m/s时,粒径为100μm和150μm的尾砂颗粒在距尾矿库下风向大约1 500m和800m处完全沉积,而粒径为50μm的小粒径尾砂颗粒能迁移至尾矿坝下游3 000m以外。  相似文献   
47.
现有参数化台风风场模型通常采用单一地表粗糙度假设,忽略地形和土地覆盖的影响,使得参数化台风风场模型不能真实反映台风风场。本文基于GTOPO30(Global Topographic Data of 30 arc seconds)全球数字高程数据和USGS(U.S.Geological Survey)全球土地覆盖数据,将地形地貌效应等效为地表粗糙长度,建立了受西北太平洋台风影响的东亚地区的地表粗糙长度空间分布;并对比验证了3个典型地貌的地表粗糙长度。然后,对参数化台风风场模型进行了适当修正,使其能耦合地形起伏对风场产生的抬升和沉降作用。以WRF(Weather Research and Forecasting)模式的模拟结果为基准,采用3个历史台风案例,考察了地形地貌对参数化台风风场模拟的影响。对比结果表明,考虑地形地貌效应可以显著提升参数化台风风场模型对台风空间结构的模拟能力。考虑地形地貌影响的参数化台风风场模型的模拟结果与实测结果吻合较好。  相似文献   
48.
铁塔近地层风场特征研究   总被引:2,自引:0,他引:2  
基于对铁塔近地层风场的观测资料,采用统计分析方法,以夏季为例对铁塔近地层风场的平均风速、平均风向、最大风速、阵风、低空风切变等进行了分析研究,给出了夏季近地层风场的分布特征。  相似文献   
49.
南京市重点工业源对城市空气质量影响的数值模拟   总被引:8,自引:2,他引:6  
运用南京大学空气质量数值预报系统,对2005年1月6─7日南京典型天气条件形成的污染过程进行数值模拟,计算分析了重污染发生时的城市污染气象环境和影响因子,同时针对该城市重点工业源区对城市主要空气污染物浓度分布的贡献做了分析.结果表明:重污染状况发生在长时间逆温条件下,尤以6日23:00—7日04:00时逆温最强(强度可达1.25 ℃/hm,逆温层厚200 m),此时风速较小,同时在市区出现较强的气流辐合,在这种气象条件下, NO2,SO2和PM10的质量浓度最高.南京市相对封闭的宁镇丘陵地形以及受东郊紫金山的影响,也是造成主城区重污染的重要影响因子之一.南京市城北工业区与主城区毗邻而且污染物排放量较大,在冬季主导风向为东北风时对主城区污染物的浓度具有显著贡献.   相似文献   
50.
结合卫星遥感技术的太湖蓝藻水华形成风场特征   总被引:1,自引:0,他引:1  
为进一步了解太湖蓝藻水华形成和分布与近地面风场的关系,利用太湖湖面及周边地区2003~2013年气象与卫星观测数据分析、并应用WRF3.5.1数值模型模拟,发现太湖蓝藻水华主要出现在卫星观测时刻前6h平均风速为0.5~3.4 m/s的区间,占比达94.7%;蓝藻水华面积总体上随风速增大而减小,大范围蓝藻水华主要出现在前6h平均风速≤2 m/s的情形下,占比达89%;风向则主要影响蓝藻水华在太湖的空间分布格局.结果表明局地风场对于太湖蓝藻水华的形成、输移和分布具有重要作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号